
Symbexcel: Bringing the
Power of Symbolic Execution
to the Fight Against
Malicious Excel 4 Macros
Giovanni Vigna, Nicola Ruaro, Fabio Pagani, Stefano Ortolani

Threat Analysis Unit, NSBU, VMware, Inc.
University of California, Santa Barbara

August 2021

2

Who we are

Giovanni Vigna

Senior Director of threat Intelligence – VMware

Professor of Computer Science – UCSB

Founder - Shellphish

Stefano Ortolani

Threat Researcher – VMware

Fabio Pagani

PostDoc Researcher – UCSB

Member - Shellphish

Nicola Ruaro

PhD Student – UCSB

Member - Shellphish

3

New trend in delivery malware

Malware that is used to download or drop a more persistent payload

Primarily being delivered as email attachment

Typically via XLS documents, but possible with certain OOXML types

Observed deploying commodity malware

Trickbot, Danabot, Gozi, Zloader, etc.

We have been tracking this threat since the beginning of 2020

Set of obfuscation techniques in continuing evolution

A legacy of maliciousness
Excel 4.0/XLM Macros in Malware

4

25+ year old feature of Excel

Predecessor to/replaced by VBA macros

Large set of functions that can be used to
interact with both an Excel workbook and the
operating system (WinAPI access)

Robust, and easy to understand and create

Resemble today’s Excel formulas/functions

Commonly used for benign purposes by older
workbooks that have not migrated to VBA

Legitimate business use for calculations

Power to be abused
What Are XL4 Macros?

Standard
Function

XL4
Examples

5

Limited to workbook-related
calculations/computations
(math/stats)

Interaction with components outside
of the workbook NOT possible

Enabled by default on all worksheets

Robust functionality that allows access
to file system, registry, WinAPI, etc.

Replaced by VBA macros, but are still
functional today

Must reside on an Excel 4.0-enabled
macro sheet

Standard Formulas/Functions XL4 Functions

What Are XL4 Macros?
Standard vs XL4 macros

6

Control flow

In an XL4 macro the entry point is the cell containing the Auto_Open label

Once the Auto_Open cell is executed, control flow is passed to the cell directly below
within the same column; this pattern repeats until interrupted

This sequential line-by-line execution can be interrupted by transferring control to another
cell via the functions GOTO, RUN, or a user-defined function

Data flow

Data is often moved around macro sheets via the FORMULA and FORMULA.FILL functions

These functions require a value to be written, and a reference of the destination cell

Code and data
XL4 Macro Essentials

7

Evasion Routine

Mouse
Audio

Phishing Image

Example: Environmental Checks

Hidden macro sheet

No obfuscated code

Sandbox evasion routine:
User interaction
Mouse capability
Audio capability

8

Original evasion tricks
New evasion trick:
Display Size Check

Height: (13)
Width: (14)

VeryHidden

Extra protection
Hides macro sheet with VeryHidden flag
instead of Hidden

Extends evasion routine
Checks display size/dimensions of workspace
Height/width
Another sandbox evasion attempt

Example: Evasion Evolution

9

Obfuscation:
Heavy usage of CHAR function
Translates decimal to ASCII:

CHAR(76) = ‘L’

Build true payload one
character at a time
(concatenation)

Example: Obfuscation

All the CHARs.

10

Evasion:

Must be executed on
specific day of month

Day of month is used
in deobfuscation
routine

Example: Time Dependency

Write day of month (+ 7) to cell
X33

Deobfuscate payload through
rotating hard-coded integers (by -17)

11

Example: Time Dependency

Executed on Incorrect Day

12

Example: Time Dependency

Executed on Correct Day

Executed on Incorrect Day

13

Example: Function Obfuscation

REGISTER is used to register windows
function with custom names

Windows function are called using
custom name

Use of label and cell address to
access string

Evades static deobfuscator to extract
useful strings like function name, DLL
name, URLs, etc.

Custom function name
referred using Label

Function call
using custom
name

14

Many techniques to obfuscate malware

Some techniques hinder detection, some help

Deobfuscating macros necessary for:
• Understanding possible behaviors
• Extracting indicators of compromise (IoCs)

Extracting macros is a tedious, error-prone task
• Static analysis does not work
• Dynamic analysis only sees one path at a time

Can we automate deobfuscation in the presence of environmental checks?

How can we guess the “right values”?

The Problem with Deobfuscation

15

Technique to model multiple (all) possible executions

Interpret the code, keeping input values symbolic

If a conditional statement is found, fork a new state and add the appropriate constraint

Once an interesting point in the execution is reached, use a constraint solver to obtain a
set of values that satisfy the constraints

Result: the deobfuscated code

The Power of Symbolic Execution

16

x = int(input())
y = x + 1
if y >= 10:

if x < 100:
interesting_code()

else:
error_1()

else:
error_2()

Example

17

x = int(input())
y = x + 1
if y >= 10:

if x < 100:
interesting_code()

else:
error_1()

else:
error_2()

Example

State A

Variables
x = <symval>

Constraints

18

x = int(input())
y = x + 1
if y >= 10:

if x < 100:
interesting_code()

else:
error_1()

else:
error_2()

Example

State A

Variables
x = <symval>

y = <symval> + 1

Constraints

19

State A

Variables
x = <symval>

y = <symval> + 1

Constraints

x = int(input())
y = x + 1
if y >= 10:

if x < 100:
interesting_code()

else:
error_1()

else:
error_2()

Example

State AA

Variables
x = <symval>

y = <symval> + 1

Constraints
y < 10

State AB

Variables
x = <symval>

y = <symval> + 1

Constraints
y >= 10

20

State A

Variables
x = <symval>

y = <symval> + 1

Constraints

x = int(input())
y = x + 1
if y >= 10:

if x < 100:
interesting_code()

else:
error_1()

else:
error_2()

Example

State AA

Variables
x = <symval>

y = <symval> + 1

Constraints
y < 10

State AB

Variables
x = <symval>

y = <symval> + 1

Constraints
y >= 10

21

x = int(input())
y = x + 1
if y >= 10:

if x < 100:
interesting_code()

else:
error_1()

else:
error_2()

Example

State ABA

Variables
x = <symval>

y = <symval> + 1

Constraints
y >= 10
x < 100

State ABB

Variables
x = <symval>

y = <symval> + 1

Constraints
y >= 10

x >= 100

State A

Variables
x = <symval>

y = <symval> + 1

Constraints

State AA

Variables
x = <symval>

y = <symval> + 1

Constraints
y < 10

State AB

Variables
x = <symval>

y = <symval> + 1

Constraints
y >= 10

22

State ABA

Variables
x = <symval>

y = <symval> + 1

Constraints
y >= 10
x < 100

x = int(input())
y = x + 1
if y >= 10:

if x < 100:
interesting_code()

else:
error_1()

else:
error_2()

Example

Concretized ABA

Variables
x = 42

The image part with relationship ID rId2 was not found in the file.

23Confidential │ ©2020 VMware, Inc. Photo by Mika Baumeister on Unsplash

Wait, but how?

https://unsplash.com/@mbaumi?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/excel?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

24

The Symbexcel Approach

25

Concrete Analysis

Good for post-infection analysis and de-obfuscation

Does not “execute” the sample

Parses the XLS file

Starts from the entry-point and interprets all the instructions

Can use brute-force and forced execution to side-step the environment configuration

Example: XLMMacroDeobfuscator (kudos! to @DissectMalware)

https://github.com/DissectMalware/XLMMacroDeobfuscator

26

Needs human input (e.g., what should be
brute-forced?)

Quickly gets ineffective when the search
space is large

Understands how environment variables
are used and propagated during the
execution

Can reason more formally about the
environment, and leverage this additional
information to solve the constraints

Concrete Symbolic

Symbolic Analysis

27

Symbexcel Architecture

Simulation ManagerLoader

State

Environment

Memory

ConstraintsSolver Backend

State State

… …

…

…

28

Symbexcel Architecture

Simulation ManagerLoader

State

Environment

Memory

ConstraintsSolver Backend

State State

… …

…

…

1

3

2

29

Static parsing

Faster, but less robust

Uses Windows Component Object Model

Interfaces directly with Excel, avoiding
some evasion techniques

xlrd2 (kudos! to @DissectMalware) COM Server

Loader

Parses the XLS file (BIFF8) and maps it into memory

Creates a simulation manager

Initializes the memory and environment

Loader Solver BackendSimulation Manager

30

Simulation Manager

State orchestrator

Keeps track of multiple execution states at the same time

Initial state starts executing from the entry point

Determines which states to explore

Loader Solver BackendSimulation Manager

31

Cell values

Formulas (macros)

Cell information

Defined names

E.g., Window height,
Operating System

Used by the malware authors
for sandbox detection

The correct environment
configuration is initially
unknown, so we associate
every environment variable
with a symbolic variable

E.g., Window height > 390

Characterize the malware
execution

Propagated to successors
states

Simulation Manager - State

Memory Environment Constraints

Loader Solver BackendSimulation Manager

32

Simulation Manager - Step

Parses each formula to generate an Abstract Syntax Tree (AST)

Dispatches the execution to one of the formula handlers

Handlers can update the memory, access the environment, add new
constraints, create new branches (states)

Loader Solver BackendSimulation Manager

33

Example Loader Solver BackendSimulation Manager

Environment
WORKSPACE13

WORKSPACE14

[A1] =CHAR(72)

Memory

[A1]

[A3]

[A5]

[A2]

[A4]

[A6]

34

Example Loader Solver BackendSimulation Manager

Environment
WORKSPACE13

WORKSPACE14

[A1] =CHAR(72)

UPDATE THE MEMORY

Memory

[A1] H

[A3]

[A5]

[A2]

[A4]

[A6]

35

Example Loader Solver BackendSimulation Manager

Environment
WORKSPACE13

WORKSPACE14

[A1] =CHAR(72)

[A2] =GET.WORKSPACE(14)

Memory

[A1] H

[A3]

[A5]

[A2]

[A4]

[A6]

36

Example Loader Solver BackendSimulation Manager

Environment
WORKSPACE13

WORKSPACE14

[A1] =CHAR(72)

[A2] =GET.WORKSPACE(14)

ACCESS THE ENVIRONMENT

Memory

[A1] H

[A3]

[A5]

[A4]

[A6]

[A2] WORKSPACE14

37

Example Loader Solver BackendSimulation Manager

Environment
WORKSPACE13

WORKSPACE14

[A1] =CHAR(72)

[A2] =GET.WORKSPACE(14)

[A3] =IF(GET.WORKSPACE(14) > 390, “X”, “L”) Memory

[A1] H

[A3]

[A5]

[A4]

[A6]

[A2] WORKSPACE14

38

Example Loader Solver BackendSimulation Manager

Environment
WORKSPACE13

WORKSPACE14

[A1] =CHAR(72)

[A2] =GET.WORKSPACE(14)

[A3] =IF(GET.WORKSPACE(14) > 390, 75, 76)

Environment
WORKSPACE13

WORKSPACE14

CREATE NEW BRANCHES

Memory

[A1] H

[A5]

[A4]

[A6]

[A2] WORKSPACE14

Memory

[A1] H

[A5]

[A4]

[A6]

[A2] WORKSPACE14

[A3] L[A3] X

39

Example Loader Solver BackendSimulation Manager

Environment
WORKSPACE13

WORKSPACE14

[A1] =CHAR(72)

[A2] =GET.WORKSPACE(14)

[A3] =IF(GET.WORKSPACE(14) > 390, 75, 76)

Environment
WORKSPACE13

WORKSPACE14

Constraints WORKSPACE14 > 390 Constraints WORKSPACE14 <= 390

ADD NEW CONSTRAINTS

Memory

[A1] H

[A5]

[A4]

[A6]

[A2] WORKSPACE14

Memory

[A1] H

[A5]

[A4]

[A6]

[A2] WORKSPACE14

[A3] L[A3] X

40

Example Loader Solver BackendSimulation Manager

Environment
WORKSPACE13

WORKSPACE14

[A1] =CHAR(72)

[A2] =GET.WORKSPACE(14)

[A3] =IF(GET.WORKSPACE(14) > 390, “X”, ”L”)

[A4] =INT(GET.WORKSPACE(14) > 390) + 84

Constraints WORKSPACE14 <= 390

Memory

[A1] H

[A5]

[A4]

[A6]

[A2] WORKSPACE14

[A3] L

41

Example Loader Solver BackendSimulation Manager

Environment
WORKSPACE13

WORKSPACE14

[A1] =CHAR(72)

[A2] =GET.WORKSPACE(14)

[A3] =IF(GET.WORKSPACE(14) > 390, “X”, ”L”)

[A4] =INT(GET.WORKSPACE(14) > 390) + 84

+

INT 84

>

GET.WORKSPACE(14) 390

Constraints WORKSPACE14 <= 390

Memory

[A1] H

[A5]

[A4]

[A6]

[A2] WORKSPACE14

[A3] L

42

Example Loader Solver BackendSimulation Manager

Environment
WORKSPACE13

WORKSPACE14

[A1] =CHAR(72)

[A2] =GET.WORKSPACE(14)

[A3] =IF(GET.WORKSPACE(14) > 390, “X”, ”L”)

[A4] =INT(GET.WORKSPACE(14) > 390) + 84

+

INT 84

>

GET.WORKSPACE(14) 390

Constraints WORKSPACE14 <= 390

Memory

[A1] H

[A5]

[A4]

[A6]

[A2] WORKSPACE14

[A3] L

43

Example Loader Solver BackendSimulation Manager

Environment
WORKSPACE13

WORKSPACE14

[A1] =CHAR(72)

[A2] =GET.WORKSPACE(14)

[A3] =IF(GET.WORKSPACE(14) > 390, “X”, “L”)

[A4] =INT(GET.WORKSPACE(14) > 390) + 84

+

INT 84

>

GET.WORKSPACE(14) 390

Constraints WORKSPACE14 <= 390

Memory

[A1] H

[A5]

[A4] SYMB_EXPR_1

[A6]

[A2] WORKSPACE14

[A3] L

44

Solver Backend Loader Solver BackendSimulation Manager

We use z3 as our SMT solver backend

The most interesting use-case is the execution of a
symbolic payload

45

Solver Backend Loader Solver BackendSimulation Manager

Environment
WORKSPACE13

WORKSPACE14

We use z3 as our SMT solver backend

The most interesting use-case is the execution of a
symbolic payload

BACK TO THE EXAMPLE!

Constraints WORKSPACE14 <= 390

Memory

[A1] H

[A5]

[A4] SYMB_EXPR_1

[A6]

[A2] WORKSPACE14

[A3] L

46

Solver Backend Loader Solver BackendSimulation Manager

Environment
WORKSPACE13

WORKSPACE14

We use z3 as our SMT solver backend

The most interesting use-case is the execution of a
symbolic payload

[A5] =FORMULA.FILL(A1&CHAR(A2)&A3&CHAR(A4), A6)

Constraints WORKSPACE14 <= 390

Memory

[A1] H

[A5]

[A4] SYMB_EXPR_1

[A6]

[A2] WORKSPACE14

[A3] L

47

Solver Backend Loader Solver BackendSimulation Manager

Environment
WORKSPACE13

WORKSPACE14

We use z3 as our SMT solver backend

The most interesting use-case is the execution of a
symbolic payload

[A5] =FORMULA.FILL(A1&CHAR(A2)&A3&CHAR(A4), A6)

Constraints WORKSPACE14 <= 390

Memory

[A1] H

[A5]

[A4] SYMB_EXPR_1

[A6]

[A2] WORKSPACE14

[A3] L

48

Solver Backend Loader Solver BackendSimulation Manager

Environment
WORKSPACE13

WORKSPACE14

We use z3 as our SMT solver backend

The most interesting use-case is the execution of a
symbolic payload

[A5] =FORMULA.FILL(A1&CHAR(A2)&A3&CHAR(A4), A6)

Constraints WORKSPACE14 <= 390

Memory

[A1] H

[A5]

[A4] SYMB_EXPR_1

[A6] SYMB_EXPR_2

[A2] WORKSPACE14

[A3] L

49

Solver Backend Loader Solver BackendSimulation Manager

Environment
WORKSPACE13

WORKSPACE14

We use z3 as our SMT solver backend

The most interesting use-case is the execution of a
symbolic payload

[A5] =FORMULA.FILL(A1&CHAR(A2)&A3&CHAR(A4), A6)

[A6] = ???

Constraints WORKSPACE14 <= 390

Memory

[A1] H

[A5]

[A4] SYMB_EXPR_1

[A6] SYMB_EXPR_2

[A2] WORKSPACE14

[A3] L

50

Solver Backend Loader Solver BackendSimulation Manager

Environment
WORKSPACE13

WORKSPACE14

[A6] = ??? à Concretize

Constraints WORKSPACE14 <= 390

Memory

[A1] H

[A5]

[A4] SYMB_EXPR_1

[A6] SYMB_EXPR_2

[A2] WORKSPACE14

[A3] L

51

Solver Backend Loader Solver BackendSimulation Manager

Environment
WORKSPACE13

WORKSPACE14

[A6] = ??? à Concretize

How many solutions?

[A1] à H

[A2] à WORKSPACE14 (integer symbolic variable)

[A3] à L

[A4] à (WORKSPACE14 > 390) + 84

WORKSPACE14 à 2^32 solutions (0, 1, -1, 2, -2…)

Constraints WORKSPACE14 <= 390

Memory

[A1] H

[A5]

[A4] SYMB_EXPR_1

[A6] SYMB_EXPR_2

[A2] WORKSPACE14

[A3] L

52

Solver Backend Loader Solver BackendSimulation Manager

Environment
WORKSPACE13

WORKSPACE14

[A6] = ??? à Concretize

How many solutions?

[A1] à H

[A2] à WORKSPACE14 (integer symbolic variable)

[A3] à L

[A4] à (WORKSPACE14 > 390) + 84

WORKSPACE14 à 2^32 solutions

CAN WE DO BETTER?

Constraints WORKSPACE14 <= 390

Memory

[A1] H

[A5]

[A4] SYMB_EXPR_1

[A6] SYMB_EXPR_2

[A2] WORKSPACE14

[A3] L

53

Observers Loader Solver BackendSimulation Manager

Environment
WORKSPACE13

WORKSPACE14

We strategically introduce observer variables to make
constraint solving more manageable

An observer is an intermediate symbolic variable that
“hides and observes” other sub-expressions in z3

Constraints WORKSPACE14 <= 390

Memory

[A1] H

[A5]

[A4] SYMB_EXPR_1

[A6] SYMB_EXPR_2

[A2] WORKSPACE14

[A3] L

54

Observers Loader Solver BackendSimulation Manager

Environment
WORKSPACE13

WORKSPACE14

We strategically introduce observer variables to make
constraint solving more manageable

An observer is an intermediate symbolic variable that
“hides and observes” other sub-expressions in z3

[A4] à (WORKSPACE14 > 390) + 84

Constraints WORKSPACE14 <= 390

Memory

[A1] H

[A5]

[A4] SYMB_EXPR_1

[A6] SYMB_EXPR_2

[A2] WORKSPACE14

[A3] L

55

Observers Loader Solver BackendSimulation Manager

Environment
WORKSPACE13

WORKSPACE14

We strategically introduce observer variables to make
constraint solving more manageable

An observer is an intermediate symbolic variable that
“hides and observes” other sub-expressions in z3

[A4] à (WORKSPACE14 > 390) + 84

OBSERVER = (WORKSPACE14 > 390)

[A4] à OBSERVER + 84

Now z3 understands that this expression can have
at most two solutions

Constraints WORKSPACE14 <= 390

Memory

[A1] H

[A5]

[A4] SYMB_EXPR_1

[A6] SYMB_EXPR_2

[A2] WORKSPACE14

[A3] L

56

Smart concretization Loader Solver BackendSimulation Manager

Environment
WORKSPACE13

WORKSPACE14

We use the XL4 grammar as an oracle to filter concretized
results:

Constraints WORKSPACE14 <= 390

Memory

[A1] H

[A5]

[A4] SYMB_EXPR_1

[A6] SYMB_EXPR_2

[A2] WORKSPACE14

[A3] L

57

Smart concretization Loader Solver BackendSimulation Manager

Environment
WORKSPACE13

WORKSPACE14

We use the XL4 grammar as an oracle to filter concretized
results:

H>LT
H?LT
H@LT
HALT
HBLT
HCLT

Constraints WORKSPACE14 <= 390

Memory

[A1] H

[A5]

[A4] SYMB_EXPR_1

[A6] SYMB_EXPR_2

[A2] WORKSPACE14

[A3] L

58

Smart concretization Loader Solver BackendSimulation Manager

Environment
WORKSPACE13

WORKSPACE14

We use the XL4 grammar as an oracle to filter concretized
results:

H>LT (invalid)
H?LT (invalid)
H@LT (invalid)

HALT
HBLT (invalid)
HCLT (invalid)

Constraints WORKSPACE14 <= 390

Memory

[A1] H

[A5]

[A4] SYMB_EXPR_1

[A6] HALT

[A2] WORKSPACE14

[A3] L

59

Malware Sample Analysis

60

Malware Sample Analysis

Error/Pruned Branch Symbolic Payload

61

Malware Sample Analysis

Deobfuscation
Routine 1

Deobfuscation
Routine 2

Stage 1

Stage 2 Stage 3

Stage 4

Error/Pruned Branch Symbolic Payload

62

Deobfuscation Routine 1: Implements a
transposition cipher. Used to de-obfuscate
the first stage

External loop through the payloads

Internal loop through the
characters

Malware Sample Analysis

Error/Pruned Branch Symbolic Payload

63

Deobfuscation Routine 1: Implements a
transposition cipher. Used to de-obfuscate
the first stage

External loop through the payloads

Internal loop through the
characters

Malware Sample Analysis

Error/Pruned Branch Symbolic Payload

0 2 B 2 1 H

B H 2 0 2 1

64

Stage 1: Spawns a new process
(Xlcall32:Excel4) and initializes the de-
obfuscation of the next stage

Malware Sample Analysis

Error/Pruned Branch Symbolic Payload

65

Deobfuscation Routine 2: Implements a
Vigenere cipher. Used with different
decryption keys to de-obfuscate the next
stages

Malware Sample Analysis

Error/Pruned Branch Symbolic Payload

66

Deobfuscation Routine 2: Implements a
Vigenere cipher. Used with different
decryption keys to de-obfuscate the next
stages

Malware Sample Analysis

Error/Pruned Branch Symbolic Payload

A H 1 $! 8

B H 2 0 2 1

1 0 1 12 17 -7

B H 2 0 2 1

+ + + + + +

= = = = = =

67

Stage 2: Writes the first 5 characters of the
final decryption key. The malware uses
different evasion techniques:

Alternate Data Streams (ADT)

Environment Configuration

System Clock

This sample will not de-obfuscate correctly
if it detects an analysis sandbox

Malware Sample Analysis

Error/Pruned Branch Symbolic Payload

68

Deobfuscation Routine 2

Malware Sample Analysis

Error/Pruned Branch Symbolic Payload

A G B 2 1 H

B H 2 0 2 1

1 1 ? ? ? ?

B H B+? 2+? 1+? H+?

+ + + + + +

= = = = = =

69

Stage 3: This stage is mostly symbolic (de-
obfuscated using the key from stage 2),
and writes the 6th and 7th characters of the
final decryption key. The malware uses
more evasion techniques at this stage:

File System Implementation

Excel Macro Security Setting

Malware Sample Analysis

Error/Pruned Branch Symbolic Payload

70

Deobfuscation Routine 2

Malware Sample Analysis

Error/Pruned Branch Symbolic Payload

A G B 2 1 H

B H 2 0 2 1

1 1 ? ? ? ?

B H B+? 2+? 1+? H+?

+ + + + + +

= = = = = =

71

Stage 4: This stage is also completely
symbolic. This is the final stage, and will
download and register a malicious
Windows DLL using rundll32.exe

If the first download fails, the sample is
configured to use a backup C&C server

Malware Sample Analysis

Error/Pruned Branch Symbolic Payload

72

Malware Sample Analysis

Deobfuscation
Routine 1

Deobfuscation
Routine 2

Stage 1

Stage 2 Stage 3

Stage 4

C:\\Users\\Public\\Documents\\QQKuHA.txt

C:\Windows\system32\rundll32.exe

https://derocktech.com/k.php

https://solemnenterprise.com/k.php

IOCs

73

74

75

76

77

Evaluation

78

Evaluation

We collect and analyze 4700 samples reported in the last
6 months (480 clusters)

Many samples still have a low detection rate in VirusTotal

Some are still undetected

79

Evaluation

Samples
correctly deobfuscated

Clusters
correctly deobfuscated

Concrete Deobfuscator 1865 324

Symbexcel 3698 450

80

Evaluation

Symbolic Samples
correctly deobfuscated

Symbolic Clusters
correctly deobfuscated

Concrete Deobfuscator 3 3

Symbexcel 682 119

81

Conclusion

82

Conclusion

XL4 Macros are an ongoing and evolving threat

Difficult to analyze and detect accurately

Symbolic Execution allows to analyze samples that would
otherwise be impossible to de-obfuscate concretely

Accurate de-obfuscation

Accurate classification

Thank You
Any questions?

WARP ROOM: SURF B

