
Advances in Memory Forensics

Fabio Pagani

9th September 2019



Publications List

Towards Automated Profile Generation for Memory Forensics S&P 2020
F Pagani, D Balzarotti (revise)

Back to the Whiteboard: a Principled Approach for the Assessment and De-
sign of Memory Forensic Techniques

USENIX 2019

F Pagani, D Balzarotti

Introducing the Temporal Dimension to Memory Forensics TOPS 2019
F Pagani, O Fedorov, D Balzarotti

Beyond precision and recall: understanding uses (andmisuses) of similarity
hashes in binary analysis

CODASPY 2018

F Pagani, M Dell’Amico, D Balzarotti

Taming transactions: Towards hardware-assisted control flow integrity us-
ing transactional memory

RAID 2016

M Muench, F Pagani, Y Shoshitaishvili, C Kruegel, G Vigna, D Balzarotti

Measuring the Role of Greylisting and Nolisting in Fighting Spam DSN 2016
F Pagani, M De Astis, M Graziano, A Lanzi, D Balzarotti 1



Memory Forensics - Introduction

Memory forensics is arguably the most fruitful, interest-
ing, and provocative realm of digital forensics.

Hale Ligh et al. — The Art of Memory Forensics (2014)
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Memory Analysis

• The “core” of memory forensics.
• Several frameworks: Volatility, Rekall (Google), Mandiant’s Memoryze..
• Examples of information that can be extracted:

• Processes→ list/tree, open files, memory mappings, extract executable and
shared libraries

• Kernel Modules→ list, code, unloaded modules
• Networking→ connections, sockets, arp table
• Windows Registry→ keys, password hashes
• System information→ clipboard content, screenshot

• Every analysis task is “organized” in a plugin
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Thesis Contributions

• Unknown effects of non-atomic memory acquisition
• Introducing the Temporal Dimension to Memory
Forensics (TOPS 2019)

• A profile is required to analyze a memory dump
• Towards Automated Profile Generation for Memory
Forensics (S&P 2020 - revise)

• Memory forensics heuristics are manually created
• Back to the Whiteboard: a Principled Approach for the
Assessment and Design of Memory Forensic
Techniques (USENIX 2019)
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Introducing the Temporal Dimension
to Memory Forensics (TOPS 2019)



Introduction

• Research in the field has focused on the spatial
dimension of memory forensics:
• Filling the semantic gap
• Locating and traversing kernel structures

• We propose a second orthogonal dimension,
time, to study temporal consistency of
information
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History

Alan Carvey — Security Incidents ML (2005)
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History

Vomel et. al — Correctness, atomicity, and integrity: Defining
criteria for forensically-sound memory acquisition (DFRWS
2009) 9



History

Gruhn et. al — Evaluating atomicity, and integrity of correct
memory acquisition methods (DFRWS 2016)
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History

Case and Richard — Memory forensics: The path forward
(DFWRS 2017)
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History

Le Berre — From corrupted memory dump to rootkit detection
(NDH 2018)
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Impact Estimation - Fragmentation
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Impact Estimation - Fragmentation
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Impact Estimation - Fragmentation
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Impact Estimation - Fragmentation

WHERE ARE
FIREFOX CODE
PAGES?!?
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Kernel-Space Integrity
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Kernel-Space Integrity

Scenario 1
(Firefox)

Scenario 2
(Apache)

Scenario 3
(Malware)

List mismatch 100% 71% 80%
Tree mismatch 100% 73% 80%

Total 100% 78% 80%

Is this actually a problem?
• List→ Firefox stack and code never present
• Tree→ Firefox stack present 10%, code present 30%
• Key recovery for WannaCry and NotPetya
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A New Temporal Dimension - Recording Time

• Given a physical page we must be able to tell when it was
acquired!

• Modified LiME to record timing information. Overhead:
• Every 100µs→ 0.7%
• Every page→ 2.4%

14



A New Temporal Dimension - Time Analysis

• Transparently add the timing information to Volatility

• Intercept object creation to create a timeline:

./vol.py -f dump.raw --profile=... --pagetime pslist
<original pslist output>

Accessed physical pages: 171
Acquisition time window: 72s

[XX-------------XxX---xXXX--xX-xX---Xxx-xx-X-XxxX-XXX]

15



Locality-Based Acquisition

• Every memory acquisition tool treats pages equally:
• Independently if they are used by the OS
• Independently if they contain forensics data
• From lowest→ highest physical address

• Can we do better?

• Why not acquiring forensics/interconnected data first, and
then rest of memory?
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Locality-Based Acquisition

Two phases:
1. Smart dump:

• Process and module list
• For each process: page tables, memory mappings, open files,
stack, heap, kernel stack..

2. Traditional acquisition of the remaining pages

Impact
• Negligible overhead in time and memory footprint
• No inconsistency in kernel and user space integrity tests!
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Conclusions

• We show that inconsistencies do not affect only page tables

• Categorization of inconsistencies: Fragment, Pointer and Value

• Kernel and user-space integrity examples

• Introduced the temporal dimension in memory forensics

• Novel technique to acquire the memory

18



Towards Automated Profile
Generation for Memory Forensics
(S&P 2020 - revise)



Introduction

• A profile is needed to overcome the semantic gap
• Address of kernel global variables
• Layout of kernel structures

• Building a profile:
• Easy for Windows: few releases, debug symbols server
• Not easy for Linux: IoT devices, Android, servers..

19



Building a profile

Manual effort to create a profile:

• Build a kernel module→ Layout of kernel structures
• Grab System.map→ Address of kernel global variables

Requirements
• Kernel headers + config
• RANDSTRUCT seed (if enabled)
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Why we need the kernel config?

struct task_struct {
#ifdef CONFIG_THREAD_INFO_IN_TASK
struct thread_info thread_info;

#endif
volatile long state;
randomized_struct_fields_start
unsigned int ptrace;

#ifdef CONFIG_SMP
struct llist_node wake_entry;
int on_cpu;

#ifdef CONFIG_THREAD_INFO_IN_TASK
unsigned int cpu;

#endif
unsigned int wakee_flips;
struct task_struct *last_wakee;
int wake_cpu;

#endif
int on_rq;

#ifdef CONFIG_CGROUP_SCHED
struct task_group

*sched_task_group;
#endif

struct sched_dl_entity dl;....
}

More than 60 #ifdef !!
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Challenge

Can we reconstruct a profile from a memory dump?

• Phase I: Symbols Recovery + Kernel Version Identification
• Several past attempts: ALL fail on modern X86_64 platforms with KASLR

• Phase II: Source Code Analysis

• Phase III: Profile Generation

22
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Phase I: Symbols Recovery

Problem
Kernel symbols are stored in a compressed form← not easy to carve!

Solution
We locate, extract and execute:
/* Call a function on each kallsyms symbol in the core kernel */
int kallsyms_on_each_symbol(int (*fn)(void *, const char *,

struct module *, unsigned long),
void *data);
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Phase II: Source Code Analysis - Overview

• Download and compile the kernel

• Pre-processor activity:
• Position of #ifdef and macro statements

• Abstract Syntax Tree analysis
• Type Definition (struct foo {...}) → Fields Position

• Function Definition (free_next(task *){...}) → Access Chains
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Phase II: Source Code Analysis - Access Chains

1 void free_next(struct task *task){
2 struct task *t = task->next;
3 if (strcmp(t->name, "init")){
4 free(t);
5 }
6 }

Access chains are triples:

• Location→ free_next:3

• Transition→ struct task->next|struct task->name

• Source→ PARAM[0]
(other valid sources: global variable, function return)

25
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Phase III: Profile Generation

We have all the ingredients we need:

• Binary code of kernel functions
• Where and how struct fields are used
(minus those accesses contained in an #ifdef)

Given a field, to extract its offset:

• Load kernel functions where the field is used in angr
• Taint source and symbolically explore the function
• “Breakpoint” on memory accesses← list of candidate
offsets!

26
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Phase III: Profile Generation

To find the correct offset of a field, we create a z3 model for
every structure:

• Hard constraints:
OffsetField1 < OffsetField2
OffsetField2 < OffsetField3

• Soft constraints:
OffsetField1 == {0, 10, 20}
OffsetField2 == {20, 50}
OffsetField3 == {20, 60}
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Results

Version Release Date Configuration Used Fields Extracted Fields

4.19.37 04/2019 Debian 230 205 (89%)
4.19.37 04/2019 Debian + RANDSTRUCT 230 172 (74%)
4.4.71 06/2017 OpenWrt 231 198 (86%)
3.18.94 05/2018 Goldfish (Android) 236 204 (86%)
2.6.38 03/2011 Ubuntu 220 191 (87%)
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Results
Debian 4.19 RANDSTRUCT Openwrt Android Ubuntu 2.6

Working Correct Wrong Working Correct Wrong Working Correct Wrong Working Correct Wrong Working Correct Wrong

linux_arp H# 10 2 # 6 6 H# 10 2 H# 11 1  12 0

linux_banner  0 0  0 0  0 0  0 0  0 0

linux_check_afinfo — 5 1 — 5 1  37 3  40 2 # 34 5

linux_check_creds  9 0  9 0  9 0  9 0  9 0

linux_check_fop # 77 4 # 65 16 # 75 4 # 76 2 # 67 3

linux_check_modules # 17 1 # 14 4 # 15 2 # 17 0 # 15 2

linux_check_syscall  36 1  32 5 H# 31 5  33 3  32 3

linux_check_tty # 11 3 # 8 6 # 9 4 # 9 4 # 11 2

linux_cpuinfo # 0 2 # 0 2 # 0 2 # 0 2  2 0

linux_dump_map  10 0 # 6 4  10 0  10 0  9 1

linux_dynamic_env  29 0  23 6  6 0  29 0  27 1

linux_elfs  26 0 # 20 6  25 0  26 0  23 4

linux_lsof  24 0 H# 22 2  24 0  24 0  23 0

linux_malfind  17 0 # 16 1 # 16 1 # 17 0 # 16 1

linux_mount  20 0 # 18 2  20 0  20 0  19 0

linux_netscan  16 1  16 1  15 2  15 2 # 14 3

linux_proc_maps  37 0 # 30 7 H# 36 1  37 0 H# 34 1

linux_psaux  13 0  12 1  13 0 # 12 1  11 0

linux_psenv  8 0  8 0  8 0  8 0  8 0

linux_pslist H# 17 1 H# 16 2  19 0 H# 16 3 H# 12 1

linux_psscan  12 1  11 2  13 0  13 0  12 1

linux_pstree  13 0  11 2 # 11 2 # 11 2  11 0

linux_threads  6 0  6 0  6 0  6 0  6 0

linux_tmpfs -L  20 0 # 18 2  20 0  20 0  19 0

linux_truecrypt_passphrase  3 0  3 0  3 0  3 0  3 0 29



Results

• On non randomized memory dumps: 57% to 64% of
plugins work correctly

• Hard constraints play an important role→ only 35% of
plugins works when RANDSTRUCT

• For the 41% of missing fields, there are models with 2 or 3
offsets
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Conclusions

• Creating a profile for Linux is manual, error prone and not
always possible

• Three phases to reconstruct a profile from a memory
dump:

• Phase I: Symbols Recovery + Kernel Version Identification
• Phase II: Source Code Analysis
• Phase III: Profile Generation

• The extracted profile supports many fundamental
forensics plugins
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Back to the Whiteboard: a Principled
Approach for the Assessment and
Design of Memory Forensic
Techniques (Usenix 2019)



Memory Forensics - Listing Processes
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Motivations

Forensic analyses are manually created by humans.

• Are there other techniques to list processes?
Linux kernel 4.19: ~6000 structures with ~40000 fields

• How can we compare them?
Shortest one? Most stable across different kernels?
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Contributions

Build a graph of
kernel structures

Define metrics to
evaluate analyses
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8 1
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Study analyses as paths
on the graph
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Kernel Graph - Creation

worklist← kernel global variables;
while worklist ̸= ∅ do

s← worklist.pop();
new_structs← Explore(s);
worklist.push(new_structs);

end while

Challenge
Kernel “abstract data types”
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Kernel Graph - ADT Challenge
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Kernel Graph - ADT Challenge
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list_head
tasks

list_head
tasks

list_head
tasks
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list_head
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list_head
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list_head
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Kernel Graph - ADT Challenge

Solved with a Clang plugin that analyzes the kernel AST

list_add(&p->tasks, &init_task.tasks);
list_add(&p->sibling, &p->children);

struct task_struct.tasks -> struct task_struct.tasks
struct task_struct.children -> struct.task_struct.siblings

37



The Graph

• 100k Structures
(Nodes)

• 840k Pointers
(Edges)
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Metrics - Rationale

Metrics should capture different aspects of memory forensics:

• Data can be inconsistent in non-atomic memory dumps

• Layout of kernel structures changes across different kernel
versions and configurations

• Attackers can modify kernel structures
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Proposed Metrics

• Atomicity
• Stability
• Consistency
• Generality
• Reliability
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Metrics

Atomicity: distance in memory between two connected structures

0x10

0x40

0x50

0x20

0x60

0x50 0x90

0x70

0x10
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Metrics

Stability: how long an edge remains stable in a running machine
• 25 snapshots at [0s, 1s, 5s, ..., 3h]

1s

10s

15s

30s
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Metrics

Consistency: Atomicity + Stability

7

3

3

3

A

B
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Evaluation of Current Analyses

Volatility Plugin

#
Nodes

Stability
(s) Fast Slow

linux_arp

13 12,000 3 3

linux_check_creds

248 2 3 3

linux_check_modules

151 700 3 3

linux_check_tty

13 30 3 3

linux_find_file

14955 0 7 7

linux_ifconfig

12 12,000 3 3

linux_lsmod

12 700 3 3

linux_lsof

821 0 7 7

linux_mount

495 10 3 7

linux_pidhashtable

469 30 3 7

linux_proc_maps

4722 0 7 7

linux_pslist

124 30 3 3
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96% of the nodes→ giant strongly connected component
(contains on average 53% of total nodes) 42



Evaluation of Current Analyses

Volatility Plugin #
Nodes

Stability
(s)

Fast Slow

linux_arp 13 12,000

3 3

linux_check_creds 248 2

3 3

linux_check_modules 151 700

3 3

linux_check_tty 13 30

3 3

linux_find_file 14955 0

7 7

linux_ifconfig 12 12,000

3 3

linux_lsmod 12 700

3 3

linux_lsof 821 0

7 7

linux_mount 495 10

3 7

linux_pidhashtable 469 30

3 7

linux_proc_maps 4722 0

7 7

linux_pslist 124 30

3 3

Stability: 3 paths never changed in over 3 hours
11 paths changed in less than 1 minute 42



Evaluation of Current Analyses

Volatility Plugin #
Nodes

Stability Consistency
(s) Fast Slow

linux_arp 13 12,000 3 3
linux_check_creds 248 2 3 3
linux_check_modules 151 700 3 3
linux_check_tty 13 30 3 3
linux_find_file 14955 0 7 7
linux_ifconfig 12 12,000 3 3
linux_lsmod 12 700 3 3
linux_lsof 821 0 7 7
linux_mount 495 10 3 7
linux_pidhashtable 469 30 3 7
linux_proc_maps 4722 0 7 7
linux_pslist 124 30 3 3

Consistency: 5 inconsistent plugins when fast acquisition
7 inconsistent plugins when slow acquisition 42



Kernel Graph - New Heuristics Results

Category Root Node
#

Nodes
#

task_struct Stability Generality Consistency

cgroup
css_set_table 172 156 10.00 29/85 7

cgrp_dfl_root 186 156 10.00 29/85 3

memory/fs
dentry_hash 58383 23 0.00 36/85 7

inode_hash 14999 23 1.00 36/85 7

workers wq_workqueues 427 69 200.00 39/85 3

All implemented as Volatility plugins!
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A Principled Approach to Memory Forensics

Forensics analyses can be extracted and evaluated in a
principled way!

• Kernel graph to model kernel structures
• Set of metrics to capture memory forensics aspects
• Experiments to study current and future techniques
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Conclusions



Conclusions

• Interest in memory forensics is growing in industry

• Hopefully academia will follow ;-)

• Thesis contributions:
• Documented effects of non atomic memory acquisition and
proposed solutions

• Showed how to reconstruct a profile from a memory dump

• Built a framework to study forensics techniques in a principled
way
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Open source

All the code and artifacts developed during this thesis are
open-source!

• https://github.com/pagabuc/atomicity_tops
• https://github.com/pagabuc/kernographer
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Volatility Tweets
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Questions?
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Backup Slides



Backup Slides - Introducing the
Temporal Dimension to Memory
Forensics (TOPS 2019)



User-Space Integrity
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User-Space Integrity

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

Frames - 6 - 6 8 - - - 6 -
Physical Pages 4 5 5 4 4 5 4 4 5 5
Acquisition Time (s) 3.2 30.0 37.8 37.0 0.25 26.0 28.6 1.0 27.6 39.9
rbp delta (s) 7.7 38.8 49.6 43.7 7.3 43.4 4.3 4.0 15.1 5.64

Corrupted (registers) 3 – 3 – – 3 3 3 – 3

Corrupted (frame pointers) – – – – – – 3 – – –
Inconsistent data N/A 3 N/A 3 – N/A N/A N/A 3 N/A

Is this actually a problem?
• Dissecting the user space process heap (DFRWS 2017)
• Building stack traces from memory dump of Windows x64 (DFRWS 2018)
• Chrome Ragamuffin (Volatility plugin for Chrome)
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Backup Slides - Towards Automated
Profile Generation for Memory
Forensics (S&P 2020 - revise)



Why we need the kernel config?

struct creds {
uint32_t uid;
uint32_t gid;

};

struct task {
struct task *next;
struct creds cred;

#ifdef CONFIG_TIME
uint64_t start_time;

#endif
char *name;

};

void setup_task(struct task *t,
char *new_name,
int gid){

t->name = new_name;
t->cred.gid = gid;

#ifdef CONFIG_TIME
t->start_time = time(NULL);

#endif
}

1 CONFIG_TIME defined
push rbx
mov rbx,rdi
mov QWORD PTR [rdi+0x18],rsi
mov DWORD PTR [rdi+0xc],edx
xor edi,edi
call 0x1030 <time@plt>
mov QWORD PTR [rbx+0x10],rax
pop rbx
ret

2 CONFIG_TIME not defined
mov QWORD PTR [rdi+0x10],rsi
mov DWORD PTR [rdi+0xc],edx
ret
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Why we need the RANDSTRUCT seed?
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Phase I: Symbols Recovery

___ksymtab

PHYSICAL
MEMORY

EXPORT_SYMBOL(``foo'');

struct kernel_symbol {
unsigned long value;
const char *name;

};

0xffffffff884efcabvalue
0xffffffff884dff6ename

value
name

value
name

``foo''

Our approach:
• Match “foo”
• Subtract distance
(∆ = name - value)
• Extract and execute
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Backup Slides - Back to the
Whiteboard: a Principled Approach
for the Assessment and Design of
Memory Forensic Techniques (Usenix
2019)



Finding New Ways to List Processes

Much harder than expected!

• Hundreds of millions of paths when considering the shortest paths from
every root node to every task_struct

• Not every path represent an heuristics, because heuristics must be generated
by an algorithm

To limit the path explosion problem:

• Removed every root node that is not connected to every task_struct
• Remove edges used by known techniques (i.e. tasks field)
• Remove similar edges (parallel edges with same weights)
• Merge similar paths into templates (struct type + remove adjacent same type
nodes)

Resulted in 4000 path templates!
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