
SYMBEXCEL: Automated
Analysis and Understanding of
Malicious Excel 4.0 Macros
Nicola Ruaro, Fabio Pagani, Stefano Ortolani, Christopher Kruegel,
Giovanni Vigna

University of California, Santa Barbara
Threat Analysis Unit, NSBU, VMware, Inc.

May 2022

2

• 25+ year old feature of Excel

• Precursor of VBA macros

• Can interact with the OS (WinAPI)

• Commonly used for benign purposes

XL4 Macros

• Abused for deploying malware

• Weaponized since at least 2013

• Recent spike of malicious usage

• Evolving obfuscation techniques

3

• 25+ year old feature of Excel

• Precursor of VBA macros

• Can interact with the OS (WinAPI)

• Commonly used for benign purposes

XL4 Macros

• Abused for deploying malware

• Weaponized since at least 2013

• Recent spike of malicious usage

• Evolving obfuscation techniques

4

Infection Flow

5

Infection Flow

6

Infection Flow

7

Infection Flow

8

Infection Flow

9

The goal of our analysis is:

• Understanding possible behaviors

• Extracting Indicators of Compromise (IoCs)

(URLs, IPs, filenames, etc.)

Goal of XL4 Macro Analysis

10

Write day of month (+7) to cell
X33

De-obfuscate payload through
rotating hard-coded integers (by -17)

11

Analysis Challenges

Obfuscation

• CHAR + FORMULA.FILL • REGISTER

[B1] =

[B3] LT

[B2] HA

[B4] ()

[A1] =FORMULA.FILL(B1&B2&B3&B4, A2)

[A2] =HALT()

ENTRY_POINT

12

Analysis Challenges

Obfuscation

• CHAR + FORMULA.FILL • REGISTER

Environmental Checks (Sandbox)

• User Interaction • Mouse Capability • Audio Capability

• Display Size • System Clock • File System Implementation

[B1] =

[B3] LT

[B2] HA

[B4] ()

[A1] =FORMULA.FILL(B1&B2&B3&B4, A2)

[A2] =HALT()

ENTRY_POINT

13

Analysis Challenges

Obfuscation

• CHAR + FORMULA.FILL • REGISTER

Environmental Checks (Sandbox)

• User Interaction • Mouse Capability • Audio Capability

• Display Size • System Clock • File System Implementation

… and combined

• Time Dependency

• Environment Dependency

[B1] =

[B3] LT

[B2] HA

[B4] ()

[A1] =FORMULA.FILL(B1&B2&B3&B4, A2)

[A2] =HALT()

ENTRY_POINT

14

Write day of month (+7) to cell
X33

De-obfuscate payload through
rotating hard-coded integers (by -17)

15

Executed on Incorrect Day

16

Executed on Correct Day

Executed on Incorrect Day

17

Extracting macros manually is tedious
and error-prone

De-obfuscation Today

18

Can we automate the de-obfuscation in the presence of

environment-dependency?

19

FUNCTION à FORMULA à MACRO

Excel 4.0 Basics

[A3] =ALERT(“This will execute 2nd”)

[A2] =ALERT(“This will execute 1st”)

Memory

20

FUNCTION à FORMULA à MACRO

Excel 4.0 Basics

[A3] =ALERT(“This will execute 2nd”)

[A2] =ALERT(“This will execute 1st”)

Memory

21

FUNCTION à FORMULA à MACRO

Excel 4.0 Basics

[A3] =ALERT(“This will execute 2nd”)

[A2] =ALERT(“This will execute 1st”)

Memory

22

FUNCTION à FORMULA à MACRO

Excel 4.0 Basics

[A3] =ALERT(“This will execute 2nd”)

[A2] =ALERT(“This will execute 1st”)

Memory

23

FUNCTION à FORMULA à MACRO

Excel 4.0 Basics

[A3] =ALERT(“This will execute 2nd”)

[A2] =ALERT(“This will execute 1st”)

Memory

ENTRY_POINT

24

FUNCTION à FORMULA à MACRO

Excel 4.0 Basics

[B4] This will be written to B4

[A3] =ALERT(“This will execute 2nd”)

[A2] =ALERT(“This will execute 1st”)

[A4] =FORMULA(”This will be written to B4”, B4)
Memory

ENTRY_POINT

25

FUNCTION à FORMULA à MACRO

Excel 4.0 Basics

[B5] This will be written to B5

[B4] This will be written to B4

[A3] =ALERT(“This will execute 2nd”)

[A5] =FORMULA.FILL(“This will be written to B5”, B5)

[A2] =ALERT(“This will execute 1st”)

[A4] =FORMULA(”This will be written to B4”, B4)
Memory

ENTRY_POINT

26

FUNCTION à FORMULA à MACRO

Excel 4.0 Basics

[B5] This will be written to B5

[B4] This will be written to B4

[A3] =ALERT(“This will execute 2nd”)

[A5] =FORMULA.FILL(“This will be written to B5”, B5)

[A2] =ALERT(“This will execute 1st”)

[A4] =FORMULA(”This will be written to B4”, B4)

[A6] =GOTO(B1) // also RUN, RETURN, user-defined function, etc.

Memory

ENTRY_POINT

27

FUNCTION à FORMULA à MACRO

Excel 4.0 Basics

[B1] =ALERT(“This will execute last”)

[B5] This will be written to B5

[B4] This will be written to B4

[A3] =ALERT(“This will execute 2nd”)

[A5] =FORMULA.FILL(“This will be written to B5”, B5)

[A2] =ALERT(“This will execute 1st”)

[A4] =FORMULA(”This will be written to B4”, B4)

[A6] =GOTO(B1) // also RUN, RETURN, user-defined function, etc.

Memory

ENTRY_POINT

28

FUNCTION à FORMULA à MACRO

Excel 4.0 Basics

[B1] =ALERT(“This will execute last”)

[B5] This will be written to B5

[B2] =HALT()

[B4] This will be written to B4

[A3] =ALERT(“This will execute 2nd”)

[A5] =FORMULA.FILL(“This will be written to B5”, B5)

[A2] =ALERT(“This will execute 1st”)

[A4] =FORMULA(”This will be written to B4”, B4)

[A6] =GOTO(B1) // also RUN, RETURN, user-defined function, etc.

Memory

ENTRY_POINT

29

Symbolic Execution allows to model all possible execution paths:

• Interpret the code, keeping the environment

• Fork on conditional instructions

• Once we reach an interesting point in the execution, use a constraint solver

De-obfuscation with SYMBEXCEL

SYMBOLIC

30

De-obfuscation with SYMBEXCEL

Simulation ManagerLoader

State

Environment

Memory

ConstraintsSolver Backend

State State

… …

…

…

31

Loader

Parses the Excel file (.xls, .xlsm, .xlsb, .xlsx) and maps it into memory

Creates a Simulation Manager

Initializes the memory and environment

Loader Solver BackendSimulation Manager

32

Simulation Manager

State orchestrator

Keeps track of multiple execution states

Initial state starts executing from the entry point

Loader Solver BackendSimulation Manager

33

Simulation Manager

State orchestrator

Keeps track of multiple execution states

Initial state starts executing from the entry point

Loader Solver BackendSimulation Manager

[A2] =FORMULA(CHAR(..)&CHAR(..)&CHAR(..), B2)

34

Simulation Manager

State orchestrator

Keeps track of multiple execution states

Initial state starts executing from the entry point

1) Parses each formula to generate an Abstract Syntax Tree (AST)

Loader Solver BackendSimulation Manager

[A2] =FORMULA(CHAR(..)&CHAR(..)&CHAR(..), B2)

35

Simulation Manager

State orchestrator

Keeps track of multiple execution states

Initial state starts executing from the entry point

1) Parses each formula to generate an Abstract Syntax Tree (AST)

2) Dispatches the execution to one or more function handlers

Loader Solver BackendSimulation Manager

[A2] =FORMULA(CHAR(..)&CHAR(..)&CHAR(..), B2)

36

Simulation Manager

State orchestrator

Keeps track of multiple execution states

Initial state starts executing from the entry point

1) Parses each formula to generate an Abstract Syntax Tree (AST)

2) Dispatches the execution to one or more function handlers

3) Handlers can update the memory, access the environment, add
new constraints, create new branches (states)

Loader Solver BackendSimulation Manager

[A2] =FORMULA(CHAR(..)&CHAR(..)&CHAR(..), B2)

37

Cell values

Formulas (macros)

Cell information

Defined names

E.g., Window height, OS
version

Used by the malware authors
for sandbox detection

The correct environment
configuration is initially
unknown, so we associate
every environment variable
with a symbolic variable

E.g., Window height > 390

Characteristics of the malware
execution

Propagated to successors
states

Simulation Manager - State

Memory Environment Constraints

Loader Solver BackendSimulation Manager

38

Example Loader Solver BackendSimulation Manager

Environment
WORKSPACE13

WORKSPACE14

[A1] =CHAR(72)

Memory

[A1]

[A3]

[A5]

[A2]

[A4]

[A6]

ENTRY_POINT

39

Example Loader Solver BackendSimulation Manager

Environment
WORKSPACE13

WORKSPACE14

[A1] =CHAR(72)

UPDATE THE MEMORY

Memory

[A1] H

[A3]

[A5]

[A2]

[A4]

[A6]

40

Example Loader Solver BackendSimulation Manager

Environment
WORKSPACE13

WORKSPACE14

[A1] =CHAR(72)

[A2] =GET.WORKSPACE(14) // window height

Memory

[A1] H

[A3]

[A5]

[A2]

[A4]

[A6]

41

Example Loader Solver BackendSimulation Manager

Environment
WORKSPACE13

WORKSPACE14

[A1] =CHAR(72)

[A2] =GET.WORKSPACE(14) // window height

ACCESS THE ENVIRONMENT

Memory

[A1] H

[A3]

[A5]

[A4]

[A6]

[A2] WORKSPACE14

42

Example Loader Solver BackendSimulation Manager

Environment
WORKSPACE13

WORKSPACE14

[A1] =CHAR(72)

[A2] =GET.WORKSPACE(14)

[A3] =IF(GET.WORKSPACE(14) > 390, “X”, “L”) Memory

[A1] H

[A3]

[A5]

[A4]

[A6]

[A2] WORKSPACE14

43

Example Loader Solver BackendSimulation Manager

Environment
WORKSPACE13

WORKSPACE14

[A1] =CHAR(72)

[A2] =GET.WORKSPACE(14)

[A3] =IF(GET.WORKSPACE(14) > 390, 75, 76)

Environment
WORKSPACE13

WORKSPACE14

CREATE NEW BRANCHES

Memory

[A1] H

[A5]

[A4]

[A6]

[A2] WORKSPACE14

Memory

[A1] H

[A5]

[A4]

[A6]

[A2] WORKSPACE14

[A3] L[A3] X

44

Example Loader Solver BackendSimulation Manager

Environment
WORKSPACE13

WORKSPACE14

[A1] =CHAR(72)

[A2] =GET.WORKSPACE(14)

[A3] =IF(GET.WORKSPACE(14) > 390, 75, 76)

Environment
WORKSPACE13

WORKSPACE14

Constraints WORKSPACE14 > 390 Constraints WORKSPACE14 <= 390

ADD NEW CONSTRAINTS

Memory

[A1] H

[A5]

[A4]

[A6]

[A2] WORKSPACE14

Memory

[A1] H

[A5]

[A4]

[A6]

[A2] WORKSPACE14

[A3] L[A3] X

45

Example Loader Solver BackendSimulation Manager

Environment
WORKSPACE13

WORKSPACE14

[A1] =CHAR(72)

[A2] =GET.WORKSPACE(14)

[A3] =IF(GET.WORKSPACE(14) > 390, “X”, ”L”)

[A4] =INT(GET.WORKSPACE(14) > 390) + 84

Constraints WORKSPACE14 <= 390

Memory

[A1] H

[A5]

[A4]

[A6]

[A2] WORKSPACE14

[A3] L

46

Example Loader Solver BackendSimulation Manager

Environment
WORKSPACE13

WORKSPACE14

[A1] =CHAR(72)

[A2] =GET.WORKSPACE(14)

[A3] =IF(GET.WORKSPACE(14) > 390, “X”, ”L”)

[A4] =INT(GET.WORKSPACE(14) > 390) + 84

Constraints WORKSPACE14 <= 390

Memory

[A1] H

[A5]

[A4]

[A6]

[A2] WORKSPACE14

[A3] L

[A4] SYMB_EXPR_1

47

Example Loader

Environment
WORKSPACE13

WORKSPACE14

[A1] =CHAR(72)

[A2] =GET.WORKSPACE(14)

[A3] =IF(GET.WORKSPACE(14) > 390, “X”, ”L”)

[A4] =INT(GET.WORKSPACE(14) > 390) + 84

[A5] =FORMULA.FILL(A1&CHAR(A2)&A3&CHAR(A4), A6)

Constraints WORKSPACE14 <= 390

Memory

[A1] H

[A5]

[A4]

[A6]

[A2] WORKSPACE14

[A3] L

[A4] SYMB_EXPR_1

Solver BackendSimulation Manager

48

Example Loader

Environment
WORKSPACE13

WORKSPACE14

[A1] =CHAR(72)

[A2] =GET.WORKSPACE(14)

[A3] =IF(GET.WORKSPACE(14) > 390, “X”, ”L”)

[A4] =INT(GET.WORKSPACE(14) > 390) + 84

[A5] =FORMULA.FILL(A1&CHAR(A2)&A3&CHAR(A4), A6)

Constraints WORKSPACE14 <= 390

Memory

[A1] H

[A5]

[A4]

[A2] WORKSPACE14

[A3] L

[A4] SYMB_EXPR_1

[A6]

Solver BackendSimulation Manager

49

Example Loader

Environment
WORKSPACE13

WORKSPACE14

[A1] =CHAR(72)

[A2] =GET.WORKSPACE(14)

[A3] =IF(GET.WORKSPACE(14) > 390, “X”, ”L”)

[A4] =INT(GET.WORKSPACE(14) > 390) + 84

[A5] =FORMULA.FILL(A1&CHAR(A2)&A3&CHAR(A4), A6)

Constraints WORKSPACE14 <= 390

Memory

[A1] H

[A5]

[A4]

[A2] WORKSPACE14

[A3] L

[A4] SYMB_EXPR_1

[A6] SYMB_EXPR_2

Solver BackendSimulation Manager

50

Example Loader

Environment
WORKSPACE13

WORKSPACE14

[A1] =CHAR(72)

[A2] =GET.WORKSPACE(14)

[A3] =IF(GET.WORKSPACE(14) > 390, “X”, ”L”)

[A4] =INT(GET.WORKSPACE(14) > 390) + 84

[A5] =FORMULA.FILL(A1&CHAR(A2)&A3&CHAR(A4), A6)

[A6] = ???

Constraints WORKSPACE14 <= 390

Memory

[A1] H

[A5]

[A4]

[A2] WORKSPACE14

[A3] L

[A4] SYMB_EXPR_1

[A6] SYMB_EXPR_2

Solver BackendSimulation Manager

51

Solver Backend Loader Solver Backend

Environment
WORKSPACE13

WORKSPACE14

[A6] = ??? à Concretize

Constraints WORKSPACE14 <= 390

Memory

[A1] H

[A5]

[A4] SYMB_EXPR_1

[A6] SYMB_EXPR_2

[A2] WORKSPACE14

[A3] L

Simulation Manager

52

Solver Backend Loader Solver Backend

Environment
WORKSPACE13

WORKSPACE14

[A6] = ??? à Concretize

How many solutions?

[A1] à H

[A2] à WORKSPACE14 (integer symbolic variable)

[A3] à L

[A4] à (WORKSPACE14 > 390) + 84

WORKSPACE14 à 2^32 solutions (0, 1, -1, 2, -2…)

Constraints WORKSPACE14 <= 390

Memory

[A1] H

[A5]

[A4] SYMB_EXPR_1

[A6] SYMB_EXPR_2

[A2] WORKSPACE14

[A3] L

Simulation Manager

53

Solver Backend Loader Solver Backend

Environment
WORKSPACE13

WORKSPACE14

[A6] = ??? à Concretize

How many solutions?

[A1] à H

[A2] à WORKSPACE14 (integer symbolic variable)

[A3] à L

[A4] à (WORKSPACE14 > 390) + 84

WORKSPACE14 à 2^32 solutions

CAN WE DO BETTER?

Constraints WORKSPACE14 <= 390

Memory

[A1] H

[A5]

[A4] SYMB_EXPR_1

[A6] SYMB_EXPR_2

[A2] WORKSPACE14

[A3] L

Simulation Manager

54

Observers Loader Solver Backend

Environment
WORKSPACE13

WORKSPACE14

We strategically introduce observer variables to make
constraint solving more manageable

An observer is an intermediate symbolic variable that
“hides and observes” other sub-expressions

Constraints WORKSPACE14 <= 390

Memory

[A1] H

[A5]

[A4] SYMB_EXPR_1

[A6] SYMB_EXPR_2

[A2] WORKSPACE14

[A3] L

Simulation Manager

55

Observers Loader Solver Backend

Environment
WORKSPACE13

WORKSPACE14

We strategically introduce observer variables to make
constraint solving more manageable

An observer is an intermediate symbolic variable that
“hides and observes” other sub-expressions

[A4] à (WORKSPACE14 > 390) + 84

Constraints WORKSPACE14 <= 390

Memory

[A1] H

[A5]

[A4] SYMB_EXPR_1

[A6] SYMB_EXPR_2

[A2] WORKSPACE14

[A3] L

Simulation Manager

56

Observers Loader Solver Backend

Environment
WORKSPACE13

WORKSPACE14

We strategically introduce observer variables to make
constraint solving more manageable

An observer is an intermediate symbolic variable that
“hides and observes” other sub-expressions

[A4] à (WORKSPACE14 > 390) + 84

OBSERVER = (WORKSPACE14 > 390)

[A4] à OBSERVER + 84

Now we understand that this expression can have at most
two solutions

Constraints WORKSPACE14 <= 390

Memory

[A1] H

[A5]

[A4] SYMB_EXPR_1

[A6] SYMB_EXPR_2

[A2] WORKSPACE14

[A3] L

Simulation Manager

57

Smart concretization Loader Solver Backend

Environment
WORKSPACE13

WORKSPACE14

We use the XL4 grammar as an oracle to filter concretized
results:

Constraints WORKSPACE14 <= 390

Memory

[A1] H

[A5]

[A4] SYMB_EXPR_1

[A6] SYMB_EXPR_2

[A2] WORKSPACE14

[A3] L

Simulation Manager

58

Smart concretization Loader Solver Backend

Environment
WORKSPACE13

WORKSPACE14

We use the XL4 grammar as an oracle to filter concretized
results:

H>LT
H?LT
H@LT
HALT
HBLT
HCLT

Constraints WORKSPACE14 <= 390

Memory

[A1] H

[A5]

[A4] SYMB_EXPR_1

[A6] SYMB_EXPR_2

[A2] WORKSPACE14

[A3] L

Simulation Manager

59

Smart concretization Loader Solver Backend

Environment
WORKSPACE13

WORKSPACE14

We use the XL4 grammar as an oracle to filter concretized
results:

H>LT (invalid)
H?LT (invalid)
H@LT (invalid)

HALT
HBLT (invalid)
HCLT (invalid)

Constraints WORKSPACE14 <= 390

Memory

[A1] H

[A5]

[A4] SYMB_EXPR_1

[A6] HALT

[A2] WORKSPACE14

[A3] L

Simulation Manager

Evaluation

61

Dataset

PUBLIC

(5,697)

PRIVATE

(18,840)

62

Dataset

PUBLIC

(5,697)

PRIVATE

(18,840)

1,637
5,788

63

How effective is SYMBEXCEL?

All Samples (24,537)
Environment-Dependent

Samples (7,425)

State-of-the-Art
Concrete Deobfuscator

(XLMMacroDeobfuscator)

SYMBEXCEL

64

How effective is SYMBEXCEL?

All Samples (24,537)
Environment-Dependent

Samples (7,425)

State-of-the-Art
Concrete Deobfuscator

(XLMMacroDeobfuscator)
12,375

SYMBEXCEL 23,931

65

How effective is SYMBEXCEL?

All Samples (24,537)
Environment-Dependent

Samples (7,425)

State-of-the-Art
Concrete Deobfuscator

(XLMMacroDeobfuscator)
12,375 410

SYMBEXCEL 23,931 7,239

66

How effective is SYMBEXCEL?

De-obfuscation
Routine 1

De-obfuscation
Routine 2

Stage 1

Stage 2

67

How effective is SYMBEXCEL?

De-obfuscation
Routine 1

De-obfuscation
Routine 2

Stage 1

Stage 2 Stage 3

Stage 4

68

How effective is SYMBEXCEL?

69

How effective is SYMBEXCEL?

70

How effective is SYMBEXCEL?

71

How effective is SYMBEXCEL?

72

How effective is SYMBEXCEL?

73

How effective is SYMBEXCEL?

URLs Filenames Domains IPs

State-of-the-Art
Concrete Deobfuscator

(XLMMacroDeobfuscator)
1,087 758 451 133

SYMBEXCEL 1,806 3,231 635 215

74

Temporal Analysis of Excel 4.0 Macros

75

Temporal Analysis of Excel 4.0 Macros

1) Triggering Mechanisms: Auto_Open, Auto_Close, Auto_Activate, VBA, DCONN

2) Obfuscation: Control-flow, Data-flow

3) Sandbox Detection

4) Anti-Analysis: File format parser, XL4 Grammar parser, Evaluation Logic

76

Temporal Analysis of Excel 4.0 Macros

1) Triggering Mechanisms: Auto_Open, Auto_Close, Auto_Activate, VBA, DCONN

2) Obfuscation: Control-flow, Data-flow

3) Sandbox Detection

4) Anti-Analysis: File format parser, XL4 Grammar parser, Evaluation Logic

77

Temporal Analysis of Excel 4.0 Macros

1) Triggering Mechanisms: Auto_Open, Auto_Close, Auto_Activate, VBA, DCONN

2) Obfuscation: Control-flow, Data-flow

3) Sandbox Detection

4) Anti-Analysis: File format parser, XL4 Grammar parser, Evaluation Logic

Generic
ZLoader

ZLoader

ZLoader

IcedID

78

Conclusion

• De-obfuscating XL4 macros is hard. Many samples still
have a low detection rate in VirusTotal

• SYMBEXCEL allows the analysis of samples that would
otherwise be impossible to de-obfuscate concretely

• Our code is public at https://github.com/ucsb-
seclab/symbexcel

• Questions? Contact me at ruaronicola@ucsb.edu

https://github.com/ucsb-seclab/symbexcel

