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Memory Analysis

• The “core” of memory forensics.
• Several frameworks: Volatility, Rekall (Google), Mandiant’s Memoryze..
• Examples of information that can be extracted:

• Processes→ list/tree, open files, memory mappings, extract executable and
shared libraries

• Modules→ list, code, unloaded modules
• Networking→ connections, sockets, arp table
• Windows Registry→ keys, password hashes
• System information→ clipboard content, screenshot

• Every task is “organized” in a plugin
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Memory Smearing - History

Alan Carvey — Security Incidents ML (2005)
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Memory Smearing - History

Vomel et. al — Correctness, atomicity, and integrity: Defining
criteria for forensically-sound memory acquisition (DFRWS
2009) 6



Memory Smearing - History

Gruhn et. al — Evaluating atomicity, and integrity of correct
memory acquisition methods (DFRWS 2016)
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Memory Smearing - History

Case and Richard — Memory forensics: The path forward
(DFWRS 2017)
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Memory Smearing - History

Le Berre — From corrupted memory dump to rootkit detection
(NDH 2018)
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The Problem
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Impact Estimation - Fragmentation
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Impact Estimation - Fragmentation
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Impact Estimation - Fragmentation

WHERE ARE
FIREFOX CODE
PAGES?!?
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Kernel-Space Integrity
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Kernel-Space Integrity

Scenario 1
(Firefox)

Scenario 2
(Apache)

Scenario 3
(Malware)

List mismatch 100% 71% 80%
Tree mismatch 100% 73% 80%

Total 100% 78% 80%

Is this actually a problem?
• List→ Firefox stack and code never present
• Tree→ Firefox stack present 10%, code present 30%
• Key recovery for WannaCry and NotPetya
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User-Space Integrity

11



User-Space Integrity

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

Frames - 6 - 6 8 - - - 6 -
Physical Pages 4 5 5 4 4 5 4 4 5 5
Acquisition Time (s) 3.2 30.0 37.8 37.0 0.25 26.0 28.6 1.0 27.6 39.9
rbp delta (s) 7.7 38.8 49.6 43.7 7.3 43.4 4.3 4.0 15.1 5.64

Corrupted (registers) 3 – 3 – – 3 3 3 – 3

Corrupted (frame pointers) – – – – – – 3 – – –
Inconsistent data N/A 3 N/A 3 – N/A N/A N/A 3 N/A

Is this actually a problem?
• Dissecting the user space process heap (DFRWS 2017)
• Building stack traces from memory dump of Windows x64 (DFRWS 2018)
• Chrome Ragamuffin (Volatility plugin for Chrome)
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Can we study smear in a more generic way?

Build a graph of
kernel structures

Define metrics to
evaluate analyses
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The Graph

• 100k Structures
(Nodes)

• 840k Pointers
(Edges)
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Proposed Metrics

• Atomicity
• Stability
• Consistency
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Metrics

Atomicity: distance in memory between two connected structures
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0x10
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Metrics

Stability: how long an edge remains stable in a running machine
• 25 snapshots at [0s, 1s, 5s, ..., 3h]

1s

10s

15s

30s
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Metrics

Consistency: Atomicity + Stability

7

3

3

3

A

B
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Evaluation of Current Analyses

Volatility Plugin #
Nodes

Stability
(s) Fast Slow

linux_arp 13

12,000 3 3

linux_check_creds 248

2 3 3

linux_check_modules 151

700 3 3

linux_check_tty 13

30 3 3

linux_find_file 14955

0 7 7

linux_ifconfig 12

12,000 3 3

linux_lsmod 12

700 3 3

linux_lsof 821

0 7 7

linux_mount 495

10 3 7

linux_pidhashtable 469

30 3 7

linux_proc_maps 4722

0 7 7

linux_pslist 124

30 3 3
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Evaluation of Current Analyses

Volatility Plugin #
Nodes

Stability
(s)

Fast Slow

linux_arp 13 12,000

3 3

linux_check_creds 248 2

3 3

linux_check_modules 151 700

3 3

linux_check_tty 13 30

3 3

linux_find_file 14955 0

7 7

linux_ifconfig 12 12,000

3 3

linux_lsmod 12 700

3 3

linux_lsof 821 0

7 7

linux_mount 495 10

3 7

linux_pidhashtable 469 30

3 7

linux_proc_maps 4722 0

7 7

linux_pslist 124 30

3 3

Stability: 3 paths never changed in over 3 hours
11 paths changed in less than 1 minute 17



Evaluation of Current Analyses

Volatility Plugin #
Nodes

Stability Consistency
(s) Fast Slow

linux_arp 13 12,000 3 3
linux_check_creds 248 2 3 3
linux_check_modules 151 700 3 3
linux_check_tty 13 30 3 3
linux_find_file 14955 0 7 7
linux_ifconfig 12 12,000 3 3
linux_lsmod 12 700 3 3
linux_lsof 821 0 7 7
linux_mount 495 10 3 7
linux_pidhashtable 469 30 3 7
linux_proc_maps 4722 0 7 7
linux_pslist 124 30 3 3

Consistency: 5 inconsistent plugins when fast acquisition
7 inconsistent plugins when slow acquisition 17
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A New Temporal Dimension - Recording Time

• Given a physical page we must be able to tell when it was
acquired!

• Modified LiME to record timing information

• Overhead:
• Every 100µs→ 0.7%
• Every page→ 2.4%

18



A New Temporal Dimension - Time Analysis

• Transparently add the timing information to Volatility

• Intercept object creation to create a timeline:

./vol.py -f dump.raw --profile=... --pagetime pslist
<original pslist output>

Accessed physical pages: 171
Acquisition time window: 72s

[XX-------------XxX---xXXX--xX-xX---Xxx-xx-X-XxxX-XXX]

19



Locality-Based Acquisition

• Every memory acquisition tool treats pages equally:
• Independently if it is used by the OS
• Independently if it contains forensics data
• From lowest→ highest physical address

• Can we do better?
• Why not acquiring forensics/interconnected data first, and
then rest of memory?

20



Locality-Based Acquisition

Two phases:
1. Smart dump:

• Process and module list
• For each process: page tables, memory mappings, open files,
stack, heap, kernel stack..

2. Traditional acquisition of the remaining pages

Impact
• Negligible overhead in time and memory footprint
• No inconsistency in kernel and user space integrity tests!
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DEMO
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Papers + Code

More details on our papers:

• Introducing the Temporal Dimension to Memory Forensics (ACM TOPS
2019)

• Back to the Whiteboard: a Principled Approach for the Assessment and
Design of Memory Forensic Techniques (USENIX 2019)

All the code and artifacts developed are open-source!

• https://github.com/pagabuc/atomicity_tops
• https://github.com/pagabuc/kernographer
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Questions?
Twitter: @pagabuc

Email: pagani@eurecom.fr
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