
Memory Smearing: Myth or Reality?

Fabio Pagani

30th September 2019



Memory Forensics - Introduction

Target
Machine

Memory
Acquisition

Memory
Analysis

Evidence

This talk

1



Memory Forensics - Introduction

Target
Machine

Memory
Acquisition

Memory
Analysis

Evidence

This talk

1



Memory Forensics - Introduction

Target
Machine

Memory
Acquisition

Memory
Analysis

Evidence

This talk

1



Memory Forensics - Introduction

Target
Machine

Memory
Acquisition

Memory
Analysis

Evidence

This talk

1



Memory Forensics - Introduction

Target
Machine

Memory
Acquisition

Memory
Analysis

Evidence

This talk

1



Memory Acquisition

Virtual
Machine?

yes no

• Snapshot
• Clone

Running?yes no

Got
root?

yes no

Software
Acquisition

Hardware
Acquisition*

• Hibernation File
• Page file
• Crash dumps

*May require
pre-installation

ATOMIC
ATOMIC

NON-ATOMIC NON-ATOMIC

Decision tree adapted from The Art of Memory Forensics

2



Memory Acquisition

Virtual
Machine?

yes no

• Snapshot
• Clone

Running?yes no

Got
root?

yes no

Software
Acquisition

Hardware
Acquisition*

• Hibernation File
• Page file
• Crash dumps

*May require
pre-installation

ATOMIC
ATOMIC

NON-ATOMIC NON-ATOMIC

Decision tree adapted from The Art of Memory Forensics

2



Memory Acquisition - Introduction

ATOMIC

NON-ATOMIC

3



Memory Acquisition - Introduction

ATOMIC NON-ATOMIC

3



Memory Analysis

• The “core” of memory forensics.
• Several frameworks: Volatility, Rekall (Google), Mandiant’s Memoryze..
• Examples of information that can be extracted:

• Processes→ list/tree, open files, memory mappings, extract executable and
shared libraries

• Modules→ list, code, unloaded modules
• Networking→ connections, sockets, arp table
• Windows Registry→ keys, password hashes
• System information→ clipboard content, screenshot

• Every task is “organized” in a plugin

4



Memory Analysis

task_struct

init_task

task_struct task_struct

next
tasks

next
tasks

next
tasks

……

7

Problem
Some pointers can be inconsistent!

5



Memory Analysis

task_struct

init_task

task_struct task_struct

next
tasks

next
tasks

next
tasks

……

7

Problem
Some pointers can be inconsistent!

5



Memory Analysis

task_struct

init_task

task_struct task_struct

next
tasks

next
tasks

next
tasks

……

7

Problem
Some pointers can be inconsistent!

5



Memory Analysis

task_struct

init_task

task_struct task_struct

next
tasks

next
tasks

next
tasks

……

7

Problem
Some pointers can be inconsistent!

5



Memory Analysis

task_struct

init_task

task_struct task_struct

next
tasks

next
tasks

next
tasks

…… 7

Problem
Some pointers can be inconsistent!

5



Memory Smearing - History

Alan Carvey — Security Incidents ML (2005)

6



Memory Smearing - History

Vomel et. al — Correctness, atomicity, and integrity: Defining
criteria for forensically-sound memory acquisition (DFRWS
2009) 6



Memory Smearing - History

Gruhn et. al — Evaluating atomicity, and integrity of correct
memory acquisition methods (DFRWS 2016)

6



Memory Smearing - History

Case and Richard — Memory forensics: The path forward
(DFWRS 2017)

6



Memory Smearing - History

Le Berre — From corrupted memory dump to rootkit detection
(NDH 2018)

6



The Problem



Types of Inconsistency

P1

T0 null

Struct A

P2 P3 P4

Acquisition
Time

T1
Struct A

6400
Struct B

AAAAAAA
AAAAAAA
AAAAAAA

Buffer C
AAAAAAA
AAAAAAA
AAAAAAA

T2
Struct A

6400
Struct B

AAAAAAA
AXXXXXA
AAAAAAA

Buffer C
AAAAAAA
AAAAAAA
AAAAAAA

T3
Struct A

8192
Struct B

BBBBBBB
BBBBBBB
BBBBBBB

Buffer C
BBBBBBB
BBBBBBB
BBBBBBB

P1@T1
Struct A

P2@T0 P3@T3

BBBBBBB
BBBBBBB
BBBBBBB

Buffer C

P4@T2

AAAAAAA
AAAAAAA
AAAAAAA

First Acquisition Sequence

P1@T1
Struct A

P2@T2

6400
Struct B

P3@T3

BBBBBBB
BBBBBBB
BBBBBBB

Buffer C

P4@T0

Second Acquisition Sequence

7



Types of Inconsistency

P1

T0 null

Struct A

P2 P3 P4

Acquisition
Time

T1
Struct A

6400
Struct B

AAAAAAA
AAAAAAA
AAAAAAA

Buffer C
AAAAAAA
AAAAAAA
AAAAAAA

T2
Struct A

6400
Struct B

AAAAAAA
AXXXXXA
AAAAAAA

Buffer C
AAAAAAA
AAAAAAA
AAAAAAA

T3
Struct A

8192
Struct B

BBBBBBB
BBBBBBB
BBBBBBB

Buffer C
BBBBBBB
BBBBBBB
BBBBBBB

P1@T1
Struct A

P2@T0 P3@T3

BBBBBBB
BBBBBBB
BBBBBBB

Buffer C

P4@T2

AAAAAAA
AAAAAAA
AAAAAAA

First Acquisition Sequence

P1@T1
Struct A

P2@T2

6400
Struct B

P3@T3

BBBBBBB
BBBBBBB
BBBBBBB

Buffer C

P4@T0

Second Acquisition Sequence

7



Types of Inconsistency

P1

T0 null

Struct A

P2 P3 P4

Acquisition
Time

T1
Struct A

6400
Struct B

AAAAAAA
AAAAAAA
AAAAAAA

Buffer C
AAAAAAA
AAAAAAA
AAAAAAA

T2
Struct A

6400
Struct B

AAAAAAA
AXXXXXA
AAAAAAA

Buffer C
AAAAAAA
AAAAAAA
AAAAAAA

T3
Struct A

8192
Struct B

BBBBBBB
BBBBBBB
BBBBBBB

Buffer C
BBBBBBB
BBBBBBB
BBBBBBB

P1@T1
Struct A

P2@T0 P3@T3

BBBBBBB
BBBBBBB
BBBBBBB

Buffer C

P4@T2

AAAAAAA
AAAAAAA
AAAAAAA

First Acquisition Sequence

P1@T1
Struct A

P2@T2

6400
Struct B

P3@T3

BBBBBBB
BBBBBBB
BBBBBBB

Buffer C

P4@T0

Second Acquisition Sequence

7



Types of Inconsistency

P1

T0 null

Struct A

P2 P3 P4

Acquisition
Time

T1
Struct A

6400
Struct B

AAAAAAA
AAAAAAA
AAAAAAA

Buffer C
AAAAAAA
AAAAAAA
AAAAAAA

T2
Struct A

6400
Struct B

AAAAAAA
AXXXXXA
AAAAAAA

Buffer C
AAAAAAA
AAAAAAA
AAAAAAA

T3
Struct A

8192
Struct B

BBBBBBB
BBBBBBB
BBBBBBB

Buffer C
BBBBBBB
BBBBBBB
BBBBBBB

P1@T1
Struct A

P2@T0 P3@T3

BBBBBBB
BBBBBBB
BBBBBBB

Buffer C

P4@T2

AAAAAAA
AAAAAAA
AAAAAAA

First Acquisition Sequence

P1@T1
Struct A

P2@T2

6400
Struct B

P3@T3

BBBBBBB
BBBBBBB
BBBBBBB

Buffer C

P4@T0

Second Acquisition Sequence

7



Types of Inconsistency

P1

T0 null

Struct A

P2 P3 P4

Acquisition
Time

T1
Struct A

6400
Struct B

AAAAAAA
AAAAAAA
AAAAAAA

Buffer C
AAAAAAA
AAAAAAA
AAAAAAA

T2
Struct A

6400
Struct B

AAAAAAA
AXXXXXA
AAAAAAA

Buffer C
AAAAAAA
AAAAAAA
AAAAAAA

T3
Struct A

8192
Struct B

BBBBBBB
BBBBBBB
BBBBBBB

Buffer C
BBBBBBB
BBBBBBB
BBBBBBB

P1@T1
Struct A

P2@T0 P3@T3

BBBBBBB
BBBBBBB
BBBBBBB

Buffer C

P4@T2

AAAAAAA
AAAAAAA
AAAAAAA

First Acquisition Sequence

P1@T1
Struct A

P2@T2

6400
Struct B

P3@T3

BBBBBBB
BBBBBBB
BBBBBBB

Buffer C

P4@T0

Second Acquisition Sequence

7



Types of Inconsistency

P1

T0 null

Struct A

P2 P3 P4

Acquisition
Time

T1
Struct A

6400
Struct B

AAAAAAA
AAAAAAA
AAAAAAA

Buffer C
AAAAAAA
AAAAAAA
AAAAAAA

T2
Struct A

6400
Struct B

AAAAAAA
AXXXXXA
AAAAAAA

Buffer C
AAAAAAA
AAAAAAA
AAAAAAA

T3
Struct A

8192
Struct B

BBBBBBB
BBBBBBB
BBBBBBB

Buffer C
BBBBBBB
BBBBBBB
BBBBBBB

P1@T1
Struct A

P2@T0 P3@T3

BBBBBBB
BBBBBBB
BBBBBBB

Buffer C

P4@T2

AAAAAAA
AAAAAAA
AAAAAAA

First Acquisition Sequence

P1@T1
Struct A

P2@T2

6400
Struct B

P3@T3

BBBBBBB
BBBBBBB
BBBBBBB

Buffer C

P4@T0

Second Acquisition Sequence

7



Types of Inconsistency

P1

T0 null

Struct A

P2 P3 P4

Acquisition
Time

T1
Struct A

6400
Struct B

AAAAAAA
AAAAAAA
AAAAAAA

Buffer C
AAAAAAA
AAAAAAA
AAAAAAA

T2
Struct A

6400
Struct B

AAAAAAA
AXXXXXA
AAAAAAA

Buffer C
AAAAAAA
AAAAAAA
AAAAAAA

T3
Struct A

8192
Struct B

BBBBBBB
BBBBBBB
BBBBBBB

Buffer C
BBBBBBB
BBBBBBB
BBBBBBB

P1@T1
Struct A

P2@T0 P3@T3

BBBBBBB
BBBBBBB
BBBBBBB

Buffer C

P4@T2

AAAAAAA
AAAAAAA
AAAAAAA

First Acquisition Sequence

P1@T1
Struct A

P2@T2

6400
Struct B

P3@T3

BBBBBBB
BBBBBBB
BBBBBBB

Buffer C

P4@T0

Second Acquisition Sequence
Fragment Inconsistency

7



Types of Inconsistency

P1

T0 null

Struct A

P2 P3 P4

Acquisition
Time

T1
Struct A

6400
Struct B

AAAAAAA
AAAAAAA
AAAAAAA

Buffer C
AAAAAAA
AAAAAAA
AAAAAAA

T2
Struct A

6400
Struct B

AAAAAAA
AXXXXXA
AAAAAAA

Buffer C
AAAAAAA
AAAAAAA
AAAAAAA

T3
Struct A

8192
Struct B

BBBBBBB
BBBBBBB
BBBBBBB

Buffer C
BBBBBBB
BBBBBBB
BBBBBBB

P1@T1
Struct A

P2@T0 P3@T3

BBBBBBB
BBBBBBB
BBBBBBB

Buffer C

P4@T2

AAAAAAA
AAAAAAA
AAAAAAA

First Acquisition Sequence

P1@T1
Struct A

P2@T2

6400
Struct B

P3@T3

BBBBBBB
BBBBBBB
BBBBBBB

Buffer C

P4@T0

Second Acquisition Sequence
Pointer Inconsistency

7



Types of Inconsistency

P1

T0 null

Struct A

P2 P3 P4

Acquisition
Time

T1
Struct A

6400
Struct B

AAAAAAA
AAAAAAA
AAAAAAA

Buffer C
AAAAAAA
AAAAAAA
AAAAAAA

T2
Struct A

6400
Struct B

AAAAAAA
AXXXXXA
AAAAAAA

Buffer C
AAAAAAA
AAAAAAA
AAAAAAA

T3
Struct A

8192
Struct B

BBBBBBB
BBBBBBB
BBBBBBB

Buffer C
BBBBBBB
BBBBBBB
BBBBBBB

P1@T1
Struct A

P2@T0 P3@T3

BBBBBBB
BBBBBBB
BBBBBBB

Buffer C

P4@T2

AAAAAAA
AAAAAAA
AAAAAAA

First Acquisition Sequence

P1@T1
Struct A

P2@T2

6400
Struct B

P3@T3

BBBBBBB
BBBBBBB
BBBBBBB

Buffer C

P4@T0

Second Acquisition Sequence

Value Inconsistency 7



Impact Estimation - Fragmentation

8



Impact Estimation - Fragmentation

CLOSE

8



Impact Estimation - Fragmentation

DISPERSED

DISPERSED
8



Impact Estimation - Fragmentation

WHERE ARE
FIREFOX CODE
PAGES?!?

8



Kernel-Space Integrity

task_struct

mm_struct

vm_area_struct

mm

’firefox’
comm

50
map_count

mm_rb

mmap

0x55a6bf7a5

vm_start

0x55a6bf7a7

vm_end

RW
vm_prot

vma vma vma vma

Volatility Plugin: map_count == list_len(mmap)
map_count == tree_len(mm_rb)

9



Kernel-Space Integrity

task_struct

mm_struct

vm_area_struct

mm

’firefox’
comm

50
map_count

mm_rb

mmap

0x55a6bf7a5

vm_start

0x55a6bf7a7

vm_end

RW
vm_prot

vma vma vma vma

7

7

Volatility Plugin: map_count == list_len(mmap)
map_count == tree_len(mm_rb)

9



Kernel-Space Integrity

task_struct

mm_struct

vm_area_struct

mm

’firefox’
comm

50
map_count

mm_rb

mmap

0x55a6bf7a5

vm_start

0x55a6bf7a7

vm_end

RW
vm_prot

vma vma vma vma

7

7

Volatility Plugin: map_count == list_len(mmap)
map_count == tree_len(mm_rb) 9



Kernel-Space Integrity

Scenario 1
(Firefox)

Scenario 2
(Apache)

Scenario 3
(Malware)

List mismatch 100% 71% 80%
Tree mismatch 100% 73% 80%

Total 100% 78% 80%

Is this actually a problem?
• List→ Firefox stack and code never present
• Tree→ Firefox stack present 10%, code present 30%
• Key recovery for WannaCry and NotPetya

10



Kernel-Space Integrity

Scenario 1
(Firefox)

Scenario 2
(Apache)

Scenario 3
(Malware)

List mismatch 100% 71% 80%
Tree mismatch 100% 73% 80%

Total 100% 78% 80%

Is this actually a problem?

• List→ Firefox stack and code never present
• Tree→ Firefox stack present 10%, code present 30%
• Key recovery for WannaCry and NotPetya

10



Kernel-Space Integrity

Scenario 1
(Firefox)

Scenario 2
(Apache)

Scenario 3
(Malware)

List mismatch 100% 71% 80%
Tree mismatch 100% 73% 80%

Total 100% 78% 80%

Is this actually a problem?
• List→ Firefox stack and code never present
• Tree→ Firefox stack present 10%, code present 30%

• Key recovery for WannaCry and NotPetya

10



Kernel-Space Integrity

Scenario 1
(Firefox)

Scenario 2
(Apache)

Scenario 3
(Malware)

List mismatch 100% 71% 80%
Tree mismatch 100% 73% 80%

Total 100% 78% 80%

Is this actually a problem?
• List→ Firefox stack and code never present
• Tree→ Firefox stack present 10%, code present 30%
• Key recovery for WannaCry and NotPetya

10



User-Space Integrity

11



User-Space Integrity

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

Frames - 6 - 6 8 - - - 6 -
Physical Pages 4 5 5 4 4 5 4 4 5 5
Acquisition Time (s) 3.2 30.0 37.8 37.0 0.25 26.0 28.6 1.0 27.6 39.9
rbp delta (s) 7.7 38.8 49.6 43.7 7.3 43.4 4.3 4.0 15.1 5.64

Corrupted (registers) 3 – 3 – – 3 3 3 – 3

Corrupted (frame pointers) – – – – – – 3 – – –
Inconsistent data N/A 3 N/A 3 – N/A N/A N/A 3 N/A

Is this actually a problem?
• Dissecting the user space process heap (DFRWS 2017)
• Building stack traces from memory dump of Windows x64 (DFRWS 2018)
• Chrome Ragamuffin (Volatility plugin for Chrome)

12



User-Space Integrity

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

Frames - 6 - 6 8 - - - 6 -
Physical Pages 4 5 5 4 4 5 4 4 5 5
Acquisition Time (s) 3.2 30.0 37.8 37.0 0.25 26.0 28.6 1.0 27.6 39.9
rbp delta (s) 7.7 38.8 49.6 43.7 7.3 43.4 4.3 4.0 15.1 5.64

Corrupted (registers) 3 – 3 – – 3 3 3 – 3

Corrupted (frame pointers) – – – – – – 3 – – –
Inconsistent data N/A 3 N/A 3 – N/A N/A N/A 3 N/A

Is this actually a problem?

• Dissecting the user space process heap (DFRWS 2017)
• Building stack traces from memory dump of Windows x64 (DFRWS 2018)
• Chrome Ragamuffin (Volatility plugin for Chrome)

12



User-Space Integrity

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

Frames - 6 - 6 8 - - - 6 -
Physical Pages 4 5 5 4 4 5 4 4 5 5
Acquisition Time (s) 3.2 30.0 37.8 37.0 0.25 26.0 28.6 1.0 27.6 39.9
rbp delta (s) 7.7 38.8 49.6 43.7 7.3 43.4 4.3 4.0 15.1 5.64

Corrupted (registers) 3 – 3 – – 3 3 3 – 3

Corrupted (frame pointers) – – – – – – 3 – – –
Inconsistent data N/A 3 N/A 3 – N/A N/A N/A 3 N/A

Is this actually a problem?
• Dissecting the user space process heap (DFRWS 2017)
• Building stack traces from memory dump of Windows x64 (DFRWS 2018)
• Chrome Ragamuffin (Volatility plugin for Chrome)

12



Can we study smear in a more generic way?

Build a graph of
kernel structures

Define metrics to
evaluate analyses

1

24

2

8 1
1

5 24

5

Study analyses as paths
on the graph

task_struct

task_struct task_struct

task_struct

init_task

13



Can we study smear in a more generic way?

Build a graph of
kernel structures

Define metrics to
evaluate analyses

1

24

2

8 1
1

5 24

5

Study analyses as paths
on the graph

task_struct

task_struct task_struct

task_struct

init_task

13



Can we study smear in a more generic way?

Build a graph of
kernel structures

Define metrics to
evaluate analyses

1

24

2

8 1
1

5 24

5

Study analyses as paths
on the graph

task_struct

task_struct task_struct

task_struct

init_task

13



The Graph

• 100k Structures
(Nodes)

• 840k Pointers
(Edges)

14



Proposed Metrics

• Atomicity
• Stability
• Consistency

15



Metrics

Atomicity: distance in memory between two connected structures

0x10

0x40

0x50

0x20

0x60

0x50 0x90

0x70

0x10

16



Metrics

Stability: how long an edge remains stable in a running machine
• 25 snapshots at [0s, 1s, 5s, ..., 3h]

1s

10s

15s

30s

16



Metrics

Consistency: Atomicity + Stability

7

3

3

3

A

B

16



Evaluation of Current Analyses

Volatility Plugin #
Nodes

Stability
(s) Fast Slow

linux_arp 13

12,000 3 3

linux_check_creds 248

2 3 3

linux_check_modules 151

700 3 3

linux_check_tty 13

30 3 3

linux_find_file 14955

0 7 7

linux_ifconfig 12

12,000 3 3

linux_lsmod 12

700 3 3

linux_lsof 821

0 7 7

linux_mount 495

10 3 7

linux_pidhashtable 469

30 3 7

linux_proc_maps 4722

0 7 7

linux_pslist 124

30 3 3

17



Evaluation of Current Analyses

Volatility Plugin #
Nodes

Stability
(s)

Fast Slow

linux_arp 13 12,000

3 3

linux_check_creds 248 2

3 3

linux_check_modules 151 700

3 3

linux_check_tty 13 30

3 3

linux_find_file 14955 0

7 7

linux_ifconfig 12 12,000

3 3

linux_lsmod 12 700

3 3

linux_lsof 821 0

7 7

linux_mount 495 10

3 7

linux_pidhashtable 469 30

3 7

linux_proc_maps 4722 0

7 7

linux_pslist 124 30

3 3

Stability: 3 paths never changed in over 3 hours
11 paths changed in less than 1 minute 17



Evaluation of Current Analyses

Volatility Plugin #
Nodes

Stability Consistency
(s) Fast Slow

linux_arp 13 12,000 3 3
linux_check_creds 248 2 3 3
linux_check_modules 151 700 3 3
linux_check_tty 13 30 3 3
linux_find_file 14955 0 7 7
linux_ifconfig 12 12,000 3 3
linux_lsmod 12 700 3 3
linux_lsof 821 0 7 7
linux_mount 495 10 3 7
linux_pidhashtable 469 30 3 7
linux_proc_maps 4722 0 7 7
linux_pslist 124 30 3 3

Consistency: 5 inconsistent plugins when fast acquisition
7 inconsistent plugins when slow acquisition 17



Solutions



A New Temporal Dimension - Recording Time

• Given a physical page we must be able to tell when it was
acquired!

• Modified LiME to record timing information

• Overhead:
• Every 100µs→ 0.7%
• Every page→ 2.4%

18



A New Temporal Dimension - Time Analysis

• Transparently add the timing information to Volatility

• Intercept object creation to create a timeline:

./vol.py -f dump.raw --profile=... --pagetime pslist
<original pslist output>

Accessed physical pages: 171
Acquisition time window: 72s

[XX-------------XxX---xXXX--xX-xX---Xxx-xx-X-XxxX-XXX]

19



Locality-Based Acquisition

• Every memory acquisition tool treats pages equally:
• Independently if it is used by the OS
• Independently if it contains forensics data
• From lowest→ highest physical address

• Can we do better?
• Why not acquiring forensics/interconnected data first, and
then rest of memory?

20



Locality-Based Acquisition

Two phases:
1. Smart dump:

• Process and module list
• For each process: page tables, memory mappings, open files,
stack, heap, kernel stack..

2. Traditional acquisition of the remaining pages

Impact
• Negligible overhead in time and memory footprint
• No inconsistency in kernel and user space integrity tests!

21



Locality-Based Acquisition

Two phases:
1. Smart dump:

• Process and module list
• For each process: page tables, memory mappings, open files,
stack, heap, kernel stack..

2. Traditional acquisition of the remaining pages

Impact
• Negligible overhead in time and memory footprint

• No inconsistency in kernel and user space integrity tests!

21



Locality-Based Acquisition

Two phases:
1. Smart dump:

• Process and module list
• For each process: page tables, memory mappings, open files,
stack, heap, kernel stack..

2. Traditional acquisition of the remaining pages

Impact
• Negligible overhead in time and memory footprint
• No inconsistency in kernel and user space integrity tests!

21



DEMO

22



Papers + Code

More details on our papers:

• Introducing the Temporal Dimension to Memory Forensics (ACM TOPS
2019)

• Back to the Whiteboard: a Principled Approach for the Assessment and
Design of Memory Forensic Techniques (USENIX 2019)

All the code and artifacts developed are open-source!

• https://github.com/pagabuc/atomicity_tops
• https://github.com/pagabuc/kernographer

23



Questions?
Twitter: @pagabuc

Email: pagani@eurecom.fr

23


	The Problem
	Solutions

