presented by

binarly

Signed and Dangerous:
BYOVD Attacks on Secure Boot

UEFI 2025 Developers Conference & Plugfest
October 9, 2025

Presented by:
Alex Matrosov, Fabio Pagani

www.uefi.org

Meet the Presenters

Alex Matrosov
CEO & Head of Research

Alex Matrosov is CEO and Founder of Binarly Inc. where he builds
an Al-powered platform to protect devices against emerging
firmware threats. Alex has more than two decades of cybersecurity
experience. He served as Chief Offensive Security Researcher at
Nvidia and Intel Security Center of Excellence (SeCoE). Alex is the
Author of numerous research papers and the bestselling
award-winning book “Rootkits and Bootkits: Reversing Modern
Malware and Next Generation Threats”. He is a frequently invited
speaker at security conferences, such as REcon, Black Hat,
Offensivecon, WOOT, DEF CON, and many others. Additionally, he
was awarded multiple times by Hex-Rays for his open source
contributions to the research community.

www.uefi.org

Meet the Presenters

Fabio Pagani

Vulnerability Research Lead

Fabio Pagani is a Vulnerability Research Lead at Binarly, where he
works at the intersection of static and dynamic analysis
techniques to help secure the UEFI ecosystem. As part of the
Binarly REsearch team, he discovered LogoFAIL and helped
affected vendors to identify and mitigate this vulnerability. Fabio
is always on the lookout for new and impactful firmware
vulnerabilities. He also maintains strong connections with the
academic community, serving on the program committees of
security conferences such as USENIX Security and WOOT.

www.uefi.org

Agenda @%

e BYOVD Attacks (UEFI version)
 Taxonomy of Attacks Against Secure Boot

* Finding Secure Boot Bypasses
* Hardening the UEFI Shell
* Mitigations in the UEFI ecosystem

e Conclusions
e Questions

www.uefi.org

Introduction to BYOVD

* Technique that exploits vulnerabilities in legitimate
Windows kernel drivers to gain privileged access

* The drivers are signed and trusted by the OS:

— Attacker installs the vulnerable kernel driver

— The vulnerability is exploited in kernel context
— Profit (?)

* Historically used only by Advanced Persistent Threats
(APTs), BYOVD is now found in commodity threats too
(ransomware)

https://blog.talosintellisence.com/exploring-vulnerable-windows-drivers/

https://blog.talosintelligence.com/exploring-vulnerable-windows-drivers/

BYOVD + UEFI =?

* UEFI firmware also relies on signature verification when
Secure Boot is active

e Secure Boot: only trusted and verified modules are
allowed to be executed

e Determination based on the content of NVRAM
variables:

o db — allowed signatures
o dbx — revoked signatures

What is the impact
of BYOVD on UEFI?

8

Taxonomy of Attacks
Against Secure Boot

1. Double-use modules: Trusted programs exposing a functionality
that can be misused to run untrusted code (e.g. the UEFI Shell)

2. Trusted but vulnerable modules: Trusted programs that contain
exploitable vulnerabilities (e.g. CVE-2025-3052)

ldentify BYOVD in the
UEFI ecosystem

High-level plan to identify double-use
and trusted but vulnerable modules:

1. Collect a comprehensive dataset
of UEFI modules

2. Determine which modules are
trusted by real-world firmware

3. Scan trusted modules to detect
double-use and trusted but
vulnerable modules

Large database of UEFI modules

e Sources:

1. Internal collection of UEFI firmware (gathered over 5+ years)
2. Private telemetry data (pk.fail detector)
3. Public threat intelligence feeds (VirusTotal)

e |ndexed over 10 million modules

name guid hex(hash) authenticode length(cert)
RealtekUndiDriver e88db748-a947-46¢f-ab6f-5c99b6c6c4b8 E7OADB6ED34F1E7948253B4AB7F18.. FC5C7711F42C178A03C2B5067DED6OCI6BDY... 8672
RealtekPxe 1be14579-d805-4c3b-8874-410b818674e9 A4782ADB8BIAA78IF2C6421FBOCY0.. BFD73544D17BEABOABB26C28335D3141C403.. 8640
InfineonTpmUpdateDxe 8900e28f-de99-4fc4-894b-6f41cd139a48 CE383755FB2B13984C6750791495A.. E39214F6C5F4E1C7653640B3D25DE9036837... 8632

ABDAFB9B-3529-4E87-8584-ECDB6ASB78B6 a8dafb9ob-3529-4e87-8584-ecdb6a5b78b6 46244EE2BSFDC63AODDOSCO21A6EA.. BICE1967709E788BC85D709F9A324D7C54ES... 8552

RtkUsbUndiDxe 3ed432¢9-5f9d-415d-a1c3-2b0427a90758 ACBOA6CDDC57B623AD939891C9C06.. EB22EE1DB8FO68696FD106295EADCA7F5393.. 8552

7C0B621C-118C-49F3-BA6A-003244829342 7cOb621c-118c-49f3-baba-003244829342 5CDF3D75COECO800BI9692AEDEF195.. 3789CA5B6CCD21A528374FOFB85958516966.. 1424

RtkUndiDxe b7b82ad8-3349-4968-3940-7b8c265ff9b4 1E8ABB2E42F4F9D041CCC71DB642A.. 1ABC75968C86E2DASFOEAE4187A689D3EE4T7.. 8744

AEB1671D-019C-4B3B-BA00-35A2E6280436 aeb1671d-019c-4b3b-bab0-35a2e6280436 36D5DD7D857FF7A9CBCE64EEEAFB6.. BOYEAAADCE7C95318364D4A0103EABOSDEFC.. 20760

O 00 N O U b WIN =

Rtk8111UndiBin 2851e234-20fd-4dle-9041-dcb8f3025cae 6E2DD29F159EDFO1187FB6B518DBA.. F27308D9AB25BEADD7413A19E7E5232B5DF2.. 9624

10 EzFlashInterfaceBin d1531968-e138-4e2e-8f7e-383307169276 (C33B9914C7D8FB5767B733FE121C5.. OFACO38F39EC874CF1D5CB56E188806B21A2.. 1408

https://pk.fail

Which UEFI Modules Are Trusted?

e Selected recent firmware images, covering most OEMs

* |dentified which modules from the database are trusted by the
selected firmware images

e Results:

— Discovered 7,157 unique modules trusted by recent firmware

— On average firmware trusts 1,500 modules with peaks
over 4,000 modules

A vulnerability in any trusted
module can be used to bypass
Secure Boot on the device

Trusted but Vulnerable Modules

* Scanned modules with our platform to uncover issues in NVRAM
variable handling and beyond

e Automatically identified one vulnerability (CVE-2025-3052) in a module
signed with the Microsoft’s third-party UEFI certificate

* June Patch Tuesday: Microsoft added 14 modules to dbx

RT->GetVariable(L"IhisiParamBuffer", GUID, OLL, &Size, &VarContent)

VarContent->param3

VarContent->param2
VarContent->param4

= OLL;
VarContent->paramb = OLL;
VarContent->paramé = OLL; «—
VarContent->paraml = Ox83EFLL;

'$H20"' : VarContent is blindly trusted and
OxB2LL: used for multiple memory writes!

Double-Use Modules

* Focus on UEFI Shell: isolated incidents or ecosystem-wide issue?

e Large attack surface, dangerous commands (mm) and scripts executed
at startup (startup.nsh)

Shell> dmem 0x11223344 20

Memory Address 0000000011223344 20 Bytes
11223344: 00 00 00 OO 00 OO0 OO0 G0-00 GO0 OO B0 *........cccv.... *
11223354: 00 00 00 00O OO0 OO OO0 OG0-00 GO0 OO GO *........ccvn... *

Shell> mm @xnzzss@ @DCCBBADH W 4

Shell> dmem 0x11223344 20
Memory Address 0000000011223344|20 Bytes

—>(11223344) (AA BB CC DD)€6—86—80 00-00 00 00 00 *................ *

11223354: 00 00 OO0 00 0O OO0 OO0 00-00 B0 00 B *..........c0vnn *

Double-Use Modules

* Focus on UEFI Shell: isolated incidents or ecosystem-wide issue?

e Large attack surface, dangerous commands (mm) and scripts executed
at startup (startup.nsh)

* Discovered 30 UEFI shells trusted by hundreds of devices
o 29 shells are signed with an OEM certificate present in cb
o 1 shell is trusted because it’s Authenticode hash was added to db

* Disclosure with CERT/CC is ongoing!

From Trusted Shell to Untrusted
Code Execution

Core idea: use the mm command to overwrite gSecurity2

if (gSecurity2 != NULL) { l- When gSecurity2 is NULL, Secure Boot is not enforced!

//
// Verify File Authentication through the Security2 Architectural Protocol
//
SecurityStatus = gSecurity2->FileAuthentication (
gSecurity2,
OriginalFilePath,

FHand.Source,
FHand.SourceSize,
BootPolicy
);
if ('EFI_ERROR (SecurityStatus) && ImageIsFromFv) {
/f

From Trusted Shell to Untrusted @%
Code Execution

We developed and tested a PoC:
1. From a privileged OS shell:

e Copy the trusted UEFI shell and a startup.nsh script to the EFI
System Partition

® Place a second unsigned UEFI module (the payload) on the
partition

e Configure the Boot Manager to run the UEFI shell before the
unsigned module

From Trusted Shell to Untrusted @%
Code Execution

We developed and tested a PoC:
2. After rebooting the device:

e The Boot Manager runs the UEFI shell

e The UEFI shell automatically executes startup.nsh, which issues an
mm command to zero gSecurity2

e The unsigned module containing the malicious payload executes
successfully

binarly

- 1 g BT S
Combining a Secure Boot Bypass
with a Bootkit on Windows 11

LU bt - e

http://www.youtube.com/watch?v=TnECRMf2CoQ

Hardening the UEFI Shell

Commit £881b4d

_L) kraxel authored and mergify[bot] committed on Feb 25, 2024

ovmfPkg: only add shell to FV in case secure boot is disabled

The EFI Shell allows to bypass secure boot, do not allow
to include the shell in the firmware images of secure boot

https://github.com/tianocore/edk2/commit/f881

enabled builds. b4d129602a49e3403043fc27550a74453234
This prevents misconfigured downstream builds.
v 0ovmfPkg/Include/Fdf/ShellDxe.fdf.inc |‘_|;] -3 +1 -1 88 UK
Ref: https://bugs. launchpad.net/ubuntu/+source/edk
: : A o ee@ -2,7 +2,7 @@
Ref: https://bugzilla.tianocore.org/show_bug.cgi?i
Signed_off-by: Gerd Hoffmann <kraxel@redhat'com> 2 2 # SPDX-License-Identifier: BSD-2-Clause-Patent
Reviewed-by: Laszlo Ersek <lersek@redhat.com> 3 3 H#
Acked-by: Jiewen Yao <Jiewen.yao@intel.com> i 4
Message-Id: <20240222101358.67818-13-kraxel@redhat
5) - 1if $(BUILD_SHELL) == TRUE
2_9 master (#5406) . Q edk2-stable202508 --- edk 5 + !if $(BUILD_SHELL) == TRUE && $(SECURE_BOOT_ENABLE) == FALSE
6 6
7 7 'if $(TOOL_CHAIN_TAG) != "XCODE5"
8 8 if $(NETWORK_ENABLE) == TRUE

https://github.com/tianocore/edk2/commit/f881b4d129602a49e3403043fc27550a74453234
https://github.com/tianocore/edk2/commit/f881b4d129602a49e3403043fc27550a74453234

ardening the UEFI Shell

; ! ; mediouni-m commented 2 weeks ago
:/r:/T::t :J(I:Eel:a?iic‘:ure Boot is on, we should not allow for the UEFI shell to be used. As such, disabling it htt 5 Ith ub.com tianocore edk2 u ” 11486
Breaking change? v : 11 mmmmE ShellPkg/Application/Shell/Shell.c |'_Q () Viewed (3 -
o Breaking change - Does this PR cause a break in build ¢
o Examples: Does it add a new library class or move a moc b8 @@ -358,6 +358,17 @@ UefiMain (
Impacts security? 358 358 EFI_HANDLE ConInHandle;
o The UEFI shell is known as insecure. 359 359 EFI_SIMPLE_TEXT_INPUT_PROTOCOL *0ldConIn;
Includes tests? 360 360 SPLIT_LIST *Split;
o Tests - Does this PR include any explicit test code? 361 + UINTS *SecureBoot ;
o Examples: Unit tests or integration tests. .
) 363 + // If Secure Boot is enabled, do not launch the UEFI shell
How This Was Tested 364 + SecureBoot = NULL;
His e o AWS sinea &file, sae 365 + GetEfiGlobalVariable2 (EFI_SECURE_BOOT_MODE_NAME, (VOID **)&SecureBoot,
https://github.com/aws/uefi/blob/5c3ac896feea3923a96944dc23e! NULL);
stable202211/0032-edk2-stable202211-uefi-shell-Disable-the-she 366 + if ((SecureBoot != NULL) && (*SecureBoot == SECURE_BOOT_MODE_ENABLE)) {
on.patch 367 + FreePool (SecureBoot);
368 + return EFI_SECURITY_VIOLATION;
369 + } else if (SecureBoot != NULL) {
370+ FreePool (SecureBoot);
371+ }
361 372
362 373 if (PcdGet8 (PcdShellSupportLevel) > 3) {
363 374 return (EFI_UNSUPPORTED);

https://github.com/tianocore/edk2/pull/11486

Mitigations REsearch

 Why these vulnerabilities

can be easily exploited?

Shadow Stack Indirect Branch Tracking (IBT)

mov rcx, [rdx+rax]
mov esi, [rbp+0xC] D endbré4
mov edi, [rbp-8] | push rbp

call rcx mov rbp, rsp

e UEFI firmware lacks basic

mitigations :(-

dbx
Memory]]
PcdDxeNxMemoryProtectionPolicy = Ox7FD5
EfiReservedMemoryType 0x0001
EfilLoaderCode 0x0002
Stack P [P (PO (— [ENStSE EFI_MEMORY_XP z E:;Loadernaya 0x0004
Book P~<smerid }BootSer‘V}cesCOde 0xB6008
r— _ - # Ef}Bootservwe?Data 0x0010
Address = = # EfiRuntimeServicesCode 0x0020
P L — # EfiRuntimeServicesData 0x0040
Pointer # EfiConventionalMemory Ox0080
SMM Core _ EFI_MEMORY_RO # EfiUnusableMemory 0x0100
- Non-SMM # EfiACPIReclaimMemory 0x0200
EfiACPIMemoryNVS 0x0400
Local ‘9 dec rax # EfiMemoryMappedIO 0xB800
Variables |5 jnz Unrolll out Bxb2, 0x10 # EfiMemoryMappedIOPortSpace 0x1000
Local 2 add rsp, 100h > add edx, 0x1 # EfiPalCode 0x2000
Buffer rsm [# EfiPersistentMemory 0x4000
Vv

Stack Canaries

Stack
* Dynamic stack canaries landed only
. Ret
recently in EDK2 (Feb 2025) Address
* Before this contribution: Sa\,’:eo‘?nFtrearme
— Stack canaries were enabled only -
for ARM targets compiled with GCC .
Local |3
— For the remaining targets, canaries Variables |2
.
were explicitly disabled (like X86) I;:S]Eler
WV

No eXecute (NX)

 Multiple PCDs allow for customization of this mitigation:

— PcdimageProtectionPolicy: which modules have

read-only code and non-executable data sections
Memory

— PcdDxeNxMemoryProtectionPolicy: defines

non-executable memory types (e.g. EfiLoaderData) EFI_MEMORY_XP

— PcdSetNxForStack: stack marked as non-executable EFT_MEMORY_XP

* |n x86, image protection policy applied only to images

. . EFI_MEMORY_RO
loaded from firmware volumes, disabled for other sources

* In ARM, image protection policy applies to all sources, and

NxMemoryProtectionPolicy protects all non-code regions,
including the stack

Adoption of Canaries and NX

Stack Canaries:

e QOut of 2.3M analyzed modules, only 2,674 (0.12%) use stack
canaries
* No x86 firmware includes this basic mitigation

No-Execute (NX):

* Only 10% of analyzed firmware enforce a correct memory
orotection policy
* In most cases, image protection is misconfigured so

pootloaders remain unprotected

Hidden Catch: Section Alignment

 NX enforcement requires the PE section alignment to match the EFI
page size (0x1000)

// Check RequiredAlignment

if ((RequiredAlignment != NULL) && ((SectionAlignment & (*RequiredAlignment - 1)) != 0)) {
DEBUG ((

DEBUG_WARN,

"rrrrrrll Image Section Alignment (0x%x) does not match Required Alignment (Ox%x) !!t!tiiii\n",

SectionAlignment,
*RequiredAlignment

));

return EFI_ABORTED;
}

e Critical gap in practice: 68% of DXE modules fail this requirement, leaving
writable code sections and executable data sections

Conclusions

— Verification of firmware components is
complex Introducing HybridPetya:
Petya/NotPetya copycat with UEFI
— Secure Boot represents a last line of defense Secure Boot bypass
agaInSt flrmwa re_level threatS UEFI copycat of Petya/NotPetya exploiting CVE-2024-7344 discovered on VirusTotal
— Large number of sighed modules in the wild — 1256p 2035 i, et

custom Secure Boot certificates

\(? \ hasherezade

— Mitigations remain largely absent in the

. . I've got some really cool gift recently... UEFI Petya PoC:
ecosystem, broader adoption is needed &

— Are UEFI-level threats coming?

https://www.welivesecurity.com/en/eset-research/introducing-hyb > UEFI Petya PoC

ridpetya-petya-notpetya-copycat-uefi-secure-boot-bypass/

https://x.com/hasherezade/status/1965389009175412769

https://www.welivesecurity.com/en/eset-research/introducing-hybridpetya-petya-notpetya-copycat-uefi-secure-boot-bypass/
https://www.welivesecurity.com/en/eset-research/introducing-hybridpetya-petya-notpetya-copycat-uefi-secure-boot-bypass/
https://x.com/hasherezade/status/1965389009175412769

Questions?

www.uefi.org

References

1.

https://blog.talosintelligence.com/exploring-vulnerable-windows

-drivers/

https://www.binarly.io/blog/another-crack-in-the-chain-of-trust

https://www.binarly.io/blog/pkfail-untrusted-platform-keys-und

ermine-secure-boot-on-uefi-ecosystem

https://www.welivesecurity.com/en/eset-research/introducing-

hybridpetya-petva-notpetya-copycat-uefi-secure-boot-bypass/

www.uefi.org

8

https://blog.talosintelligence.com/exploring-vulnerable-windows-drivers/
https://blog.talosintelligence.com/exploring-vulnerable-windows-drivers/
https://www.binarly.io/blog/another-crack-in-the-chain-of-trust
https://www.binarly.io/blog/pkfail-untrusted-platform-keys-undermine-secure-boot-on-uefi-ecosystem
https://www.binarly.io/blog/pkfail-untrusted-platform-keys-undermine-secure-boot-on-uefi-ecosystem
https://www.welivesecurity.com/en/eset-research/introducing-hybridpetya-petya-notpetya-copycat-uefi-secure-boot-bypass/
https://www.welivesecurity.com/en/eset-research/introducing-hybridpetya-petya-notpetya-copycat-uefi-secure-boot-bypass/

