
presented by

Signed and Dangerous: 
BYOVD Attacks on Secure Boot

UEFI 2025 Developers Conference & Plugfest
October 9, 2025

Presented by:
Alex Matrosov, Fabio Pagani

1www.uefi.org



Meet the Presenters

Alex Matrosov
CEO & Head of Research
Alex Matrosov is CEO and Founder of Binarly Inc. where he builds 
an AI-powered platform to protect devices against emerging 
firmware threats. Alex has more than two decades of cybersecurity 
experience. He served as Chief Offensive Security Researcher at 
Nvidia and Intel Security Center of Excellence (SeCoE). Alex is the 
Author of numerous research papers and the bestselling 
award-winning book “Rootkits and Bootkits: Reversing Modern 
Malware and Next Generation Threats”. He is a frequently invited 
speaker at security conferences, such as REcon, Black Hat, 
Offensivecon, WOOT, DEF CON, and many others. Additionally, he 
was awarded multiple times by Hex-Rays for his open source 
contributions to the research community.

2www.uefi.org



Meet the Presenters

Fabio Pagani
Vulnerability Research Lead

Fabio Pagani is a Vulnerability Research Lead at Binarly, where he 
works at the intersection of static and dynamic analysis 
techniques to help secure the UEFI ecosystem. As part of the 
Binarly REsearch team, he discovered LogoFAIL and helped 
affected vendors to identify and mitigate this vulnerability. Fabio 
is always on the lookout for new and impactful firmware 
vulnerabilities. He also maintains strong connections with the 
academic community, serving on the program committees of 
security conferences such as USENIX Security and WOOT.

3www.uefi.org



Agenda

• BYOVD Attacks (UEFI version)

• Taxonomy of Attacks Against Secure Boot

• Finding Secure Boot Bypasses 

• Hardening the UEFI Shell

• Mitigations in the UEFI ecosystem

• Conclusions

• Questions

www.uefi.org 4



Introduction to BYOVD 
• Technique that exploits vulnerabilities in legitimate 

Windows kernel drivers to gain privileged access

• The drivers are signed and trusted by the OS:

– Attacker installs the vulnerable kernel driver

– The vulnerability is exploited in kernel context 

– Profit (?)

• Historically used only by Advanced Persistent Threats 

(APTs), BYOVD is now found in commodity threats too 

(ransomware)

https://blog.talosintelligence.com/exploring-vulnerable-windows-drivers/

5

https://blog.talosintelligence.com/exploring-vulnerable-windows-drivers/


BYOVD + UEFI = ?

6

• UEFI firmware also relies on signature verification when 
Secure Boot is active

• Secure Boot: only trusted and verified modules are 
allowed to be executed 

• Determination based on the content of NVRAM 
variables:

○ db → allowed signatures
○ dbx → revoked signatures

What is the impact 
of BYOVD on UEFI?



Taxonomy of Attacks
Against Secure Boot
1. Double-use modules: Trusted programs exposing a functionality 

that can be misused to run untrusted code (e.g. the UEFI Shell) 

2. Trusted but vulnerable modules: Trusted programs that contain 
exploitable vulnerabilities (e.g. CVE-2025-3052)

3. Leaked private keys: Keys used in authentication that are compromised, 
allowing attackers to sign malicious modules (e.g. PKfail)

4. Verification logic bugs: Bugs in the verification process itself that allows 
an attacker to bypass verification (e.g. CVE-2025-6198)

5. Debug or incomplete features: Features intended for debugging 
end up in production devices and allow to bypass authentication 
(e.g. CVE-2021-0114) 7



High-level plan to identify double-use 

and trusted but vulnerable modules:

1. Collect a comprehensive dataset 

of UEFI modules

2. Determine which modules are 

trusted by real-world firmware

3. Scan trusted modules to detect 

double-use and trusted but 

vulnerable modules
8

Identify BYOVD in the
UEFI ecosystem



Large database of UEFI modules

9

• Sources:

1. Internal collection of UEFI firmware (gathered over 5+ years)

2. Private telemetry data (pk.fail detector)

3. Public threat intelligence feeds (VirusTotal)

• Indexed over 10 million modules

https://pk.fail


Which UEFI Modules Are Trusted?

10

• Selected recent firmware images, covering most OEMs 

• Identified which modules from the database are trusted by the 
selected firmware images

• Results:
– Discovered 7,157 unique modules trusted by recent firmware
– On average firmware trusts 1,500 modules with peaks 

over 4,000 modules

A vulnerability in any trusted 
module can be used to bypass 

Secure Boot on the device



Trusted but Vulnerable Modules

11

• Scanned modules with our platform to uncover issues in NVRAM 
variable handling and beyond

• Automatically identified one vulnerability (CVE-2025-3052) in a module 
signed with the Microsoft’s third-party UEFI certificate 

• June Patch Tuesday: Microsoft added 14 modules to dbx



Double-Use Modules

12

• Focus on UEFI Shell: isolated incidents or ecosystem-wide issue?

• Large attack surface, dangerous commands (mm) and scripts executed 

at startup (startup.nsh)



Double-Use Modules

13

• Focus on UEFI Shell: isolated incidents or ecosystem-wide issue?

• Large attack surface, dangerous commands (mm) and scripts executed 

at startup (startup.nsh)

• Discovered 30 UEFI shells trusted by hundreds of devices 

○ 29 shells are signed with an OEM certificate present in db

○ 1 shell is trusted because it’s Authenticode hash was added to db

• Disclosure with CERT/CC is ongoing!



14

Core idea: use the mm command to overwrite gSecurity2

From Trusted Shell to Untrusted 
Code Execution



15

From Trusted Shell to Untrusted 
Code Execution
We developed and tested a PoC:

1. From a privileged OS shell:

● Copy the trusted UEFI shell and a startup.nsh script to the EFI 

System Partition 

● Place a second unsigned UEFI module (the payload) on the 

partition

● Configure the Boot Manager to run the UEFI shell before the 

unsigned module



16

We developed and tested a PoC:

2. After rebooting the device:

● The Boot Manager runs the UEFI shell

● The UEFI shell automatically executes startup.nsh, which issues an 

mm command to zero gSecurity2

● The unsigned module containing the malicious payload executes 

successfully

From Trusted Shell to Untrusted 
Code Execution



17

http://www.youtube.com/watch?v=TnECRMf2CoQ


Hardening the UEFI Shell

18

https://github.com/tianocore/edk2/commit/f881
b4d129602a49e3403043fc27550a74453234

https://github.com/tianocore/edk2/commit/f881b4d129602a49e3403043fc27550a74453234
https://github.com/tianocore/edk2/commit/f881b4d129602a49e3403043fc27550a74453234


Hardening the UEFI Shell

19

https://github.com/tianocore/edk2/pull/11486

https://github.com/tianocore/edk2/pull/11486


• Why these vulnerabilities 

can be easily exploited?

• UEFI firmware lacks basic 

mitigations :(

Mitigations REsearch

20



Stack Canaries 

21

• Dynamic stack canaries landed only 

recently in EDK2 (Feb 2025)

• Before this contribution: 

– Stack canaries were enabled only 

for ARM targets compiled with GCC

– For the remaining targets, canaries 

were explicitly disabled (like X86)



No eXecute (NX) 

22

• Multiple PCDs allow for customization of this mitigation: 

– PcdImageProtectionPolicy: which modules have 

read-only code and non-executable data sections

– PcdDxeNxMemoryProtectionPolicy: defines 

non-executable memory types (e.g. EfiLoaderData) 

– PcdSetNxForStack: stack marked as non-executable

• In x86, image protection policy applied only to images 

loaded from firmware volumes, disabled for other sources

• In ARM, image protection policy applies to all sources, and 

NxMemoryProtectionPolicy protects all non-code regions, 

including the stack



Stack Canaries:

• Out of 2.3M analyzed modules, only 2,674 (0.12%) use stack 

canaries

• No x86 firmware includes this basic mitigation

No-Execute (NX):

• Only 10% of analyzed firmware enforce a correct memory 

protection policy

• In most cases, image protection is misconfigured so 

bootloaders remain unprotected

Adoption of Canaries and NX

23



• NX enforcement requires the PE section alignment to match the EFI 

page size (0x1000)

• Critical gap in practice: 68% of DXE modules fail this requirement, leaving 

writable code sections and executable data sections 

Hidden Catch: Section Alignment

24



Conclusions
– Verification of firmware components is 

complex

– Secure Boot represents a last line of defense 

against firmware-level threats

– Large number of signed modules in the wild → 

custom Secure Boot certificates 

– Mitigations remain largely absent in the 

ecosystem, broader adoption is needed

– Are UEFI-level threats coming?

https://www.welivesecurity.com/en/eset-research/introducing-hyb

ridpetya-petya-notpetya-copycat-uefi-secure-boot-bypass/

https://x.com/hasherezade/status/1965389009175412769

25

https://www.welivesecurity.com/en/eset-research/introducing-hybridpetya-petya-notpetya-copycat-uefi-secure-boot-bypass/
https://www.welivesecurity.com/en/eset-research/introducing-hybridpetya-petya-notpetya-copycat-uefi-secure-boot-bypass/
https://x.com/hasherezade/status/1965389009175412769


Questions?

www.uefi.org 26



References
1. https://blog.talosintelligence.com/exploring-vulnerable-windows

-drivers/

2. https://www.binarly.io/blog/another-crack-in-the-chain-of-trust

3. https://www.binarly.io/blog/pkfail-untrusted-platform-keys-und
ermine-secure-boot-on-uefi-ecosystem

4. https://www.welivesecurity.com/en/eset-research/introducing-
hybridpetya-petya-notpetya-copycat-uefi-secure-boot-bypass/

www.uefi.org 27

https://blog.talosintelligence.com/exploring-vulnerable-windows-drivers/
https://blog.talosintelligence.com/exploring-vulnerable-windows-drivers/
https://www.binarly.io/blog/another-crack-in-the-chain-of-trust
https://www.binarly.io/blog/pkfail-untrusted-platform-keys-undermine-secure-boot-on-uefi-ecosystem
https://www.binarly.io/blog/pkfail-untrusted-platform-keys-undermine-secure-boot-on-uefi-ecosystem
https://www.welivesecurity.com/en/eset-research/introducing-hybridpetya-petya-notpetya-copycat-uefi-secure-boot-bypass/
https://www.welivesecurity.com/en/eset-research/introducing-hybridpetya-petya-notpetya-copycat-uefi-secure-boot-bypass/

