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Agenda

• BYOVD Attacks (UEFI version)

• Taxonomy of Attacks Against Secure Boot

• Finding Secure Boot Bypasses 

• Hardening the UEFI Shell

• Mitigations in the UEFI ecosystem

• Conclusions

• Questions
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Introduction to BYOVD 
• Technique that exploits vulnerabilities in legitimate 

Windows kernel drivers to gain privileged access

• The drivers are signed and trusted by the OS:

– Attacker installs the vulnerable kernel driver

– The vulnerability is exploited in kernel context 

– Profit (?)

• Historically used only by Advanced Persistent Threats 

(APTs), BYOVD is now found in commodity threats too 

(ransomware)

https://blog.talosintelligence.com/exploring-vulnerable-windows-drivers/
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BYOVD + UEFI = ?
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• UEFI firmware also relies on signature verification when 
Secure Boot is active

• Secure Boot: only trusted and verified modules are 
allowed to be executed 

• Determination based on the content of NVRAM 
variables:

○ db → allowed signatures
○ dbx → revoked signatures

What is the impact 
of BYOVD on UEFI?



Taxonomy of Attacks
Against Secure Boot
1. Double-use modules: Trusted programs exposing a functionality 

that can be misused to run untrusted code (e.g. the UEFI Shell) 

2. Trusted but vulnerable modules: Trusted programs that contain 
exploitable vulnerabilities (e.g. CVE-2025-3052)

3. Leaked private keys: Keys used in authentication that are compromised, 
allowing attackers to sign malicious modules (e.g. PKfail)

4. Verification logic bugs: Bugs in the verification process itself that allows 
an attacker to bypass verification (e.g. CVE-2025-6198)

5. Debug or incomplete features: Features intended for debugging 
end up in production devices and allow to bypass authentication 
(e.g. CVE-2021-0114) 7



High-level plan to identify double-use 

and trusted but vulnerable modules:

1. Collect a comprehensive dataset 

of UEFI modules

2. Determine which modules are 

trusted by real-world firmware

3. Scan trusted modules to detect 

double-use and trusted but 

vulnerable modules
8

Identify BYOVD in the
UEFI ecosystem



Large database of UEFI modules
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• Sources:

1. Internal collection of UEFI firmware (gathered over 5+ years)

2. Private telemetry data (pk.fail detector)

3. Public threat intelligence feeds (VirusTotal)

• Indexed over 10 million modules

https://pk.fail


Which UEFI Modules Are Trusted?
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• Selected recent firmware images, covering most OEMs 

• Identified which modules from the database are trusted by the 
selected firmware images

• Results:
– Discovered 7,157 unique modules trusted by recent firmware
– On average firmware trusts 1,500 modules with peaks 

over 4,000 modules

A vulnerability in any trusted 
module can be used to bypass 

Secure Boot on the device



Trusted but Vulnerable Modules
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• Scanned modules with our platform to uncover issues in NVRAM 
variable handling and beyond

• Automatically identified one vulnerability (CVE-2025-3052) in a module 
signed with the Microsoft’s third-party UEFI certificate 

• June Patch Tuesday: Microsoft added 14 modules to dbx



Double-Use Modules
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• Focus on UEFI Shell: isolated incidents or ecosystem-wide issue?

• Large attack surface, dangerous commands (mm) and scripts executed 

at startup (startup.nsh)



Double-Use Modules
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• Focus on UEFI Shell: isolated incidents or ecosystem-wide issue?

• Large attack surface, dangerous commands (mm) and scripts executed 

at startup (startup.nsh)

• Discovered 30 UEFI shells trusted by hundreds of devices 

○ 29 shells are signed with an OEM certificate present in db

○ 1 shell is trusted because it’s Authenticode hash was added to db

• Disclosure with CERT/CC is ongoing!
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Core idea: use the mm command to overwrite gSecurity2

From Trusted Shell to Untrusted 
Code Execution
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From Trusted Shell to Untrusted 
Code Execution
We developed and tested a PoC:

1. From a privileged OS shell:

● Copy the trusted UEFI shell and a startup.nsh script to the EFI 

System Partition 

● Place a second unsigned UEFI module (the payload) on the 

partition

● Configure the Boot Manager to run the UEFI shell before the 

unsigned module
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We developed and tested a PoC:

2. After rebooting the device:

● The Boot Manager runs the UEFI shell

● The UEFI shell automatically executes startup.nsh, which issues an 

mm command to zero gSecurity2

● The unsigned module containing the malicious payload executes 

successfully

From Trusted Shell to Untrusted 
Code Execution
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http://www.youtube.com/watch?v=TnECRMf2CoQ


Hardening the UEFI Shell
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https://github.com/tianocore/edk2/commit/f881
b4d129602a49e3403043fc27550a74453234

https://github.com/tianocore/edk2/commit/f881b4d129602a49e3403043fc27550a74453234
https://github.com/tianocore/edk2/commit/f881b4d129602a49e3403043fc27550a74453234


Hardening the UEFI Shell
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https://github.com/tianocore/edk2/pull/11486

https://github.com/tianocore/edk2/pull/11486


• Why these vulnerabilities 

can be easily exploited?

• UEFI firmware lacks basic 

mitigations :(

Mitigations REsearch
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Stack Canaries 
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• Dynamic stack canaries landed only 

recently in EDK2 (Feb 2025)

• Before this contribution: 

– Stack canaries were enabled only 

for ARM targets compiled with GCC

– For the remaining targets, canaries 

were explicitly disabled (like X86)



No eXecute (NX) 
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• Multiple PCDs allow for customization of this mitigation: 

– PcdImageProtectionPolicy: which modules have 

read-only code and non-executable data sections

– PcdDxeNxMemoryProtectionPolicy: defines 

non-executable memory types (e.g. EfiLoaderData) 

– PcdSetNxForStack: stack marked as non-executable

• In x86, image protection policy applied only to images 

loaded from firmware volumes, disabled for other sources

• In ARM, image protection policy applies to all sources, and 

NxMemoryProtectionPolicy protects all non-code regions, 

including the stack



Stack Canaries:

• Out of 2.3M analyzed modules, only 2,674 (0.12%) use stack 

canaries

• No x86 firmware includes this basic mitigation

No-Execute (NX):

• Only 10% of analyzed firmware enforce a correct memory 

protection policy

• In most cases, image protection is misconfigured so 

bootloaders remain unprotected

Adoption of Canaries and NX
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• NX enforcement requires the PE section alignment to match the EFI 

page size (0x1000)

• Critical gap in practice: 68% of DXE modules fail this requirement, leaving 

writable code sections and executable data sections 

Hidden Catch: Section Alignment
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Conclusions
– Verification of firmware components is 

complex

– Secure Boot represents a last line of defense 

against firmware-level threats

– Large number of signed modules in the wild → 

custom Secure Boot certificates 

– Mitigations remain largely absent in the 

ecosystem, broader adoption is needed

– Are UEFI-level threats coming?

https://www.welivesecurity.com/en/eset-research/introducing-hyb

ridpetya-petya-notpetya-copycat-uefi-secure-boot-bypass/

https://x.com/hasherezade/status/1965389009175412769
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Questions?
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