
Signed and Dangerous:
BYOVD Attacks on
Secure Boot
Alex Matrosov, Fabio Pagani

Presenters

Alex Matrosov
CEO & Head
of Research

Fabio Pagani
Vulnerability

Research Lead

Agenda
● BYOVD Attacks (UEFI version)

● Taxonomy of Attacks against Secure
Boot

● Finding Secure Boot bypasses

● Breaking BMC firmware validation

● Conclusions

https://www.binarly.io/blog/broken-trust-fixed-supermicro-bmc-bug-gains-a-new-life-in-two-new-vulnerabilities
https://www.binarly.io/advisories/brly-2025-020
https://www.binarly.io/advisories/brly-2025-021

https://www.binarly.io/blog/broken-trust-fixed-supermicro-bmc-bug-gains-a-new-life-in-two-new-vulnerabilities
https://www.binarly.io/advisories/brly-2025-020
https://www.binarly.io/advisories/brly-2025-021
https://www.binarly.io/blog/broken-trust-fixed-supermicro-bmc-bug-gains-a-new-life-in-two-new-vulnerabilities

https://www.supermicro.com/en/support/security_BMC_IPMI_Sept_2025

https://www.supermicro.com/en/support/security_BMC_IPMI_Sept_2025

Security risks arising from firmware
developer and device vendor breaches

[2025] SignedModule.efi found on VT

https://www.binarly.io/blog/another-crack-in-the-chain-of-trust
https://www.kb.cert.org/vuls/id/806555

https://www.binarly.io/blog/another-crack-in-the-chain-of-trust
https://www.kb.cert.org/vuls/id/806555

[2025] SignedModule.efi found on VT

● Technique that exploits vulnerabilities in legitimate Windows
kernel drivers to gain privileged access

● The drivers are signed and trusted by the OS:

○ Attacker installs the vulnerable kernel driver
○ The vulnerability is exploited in kernel context
○ Profit (?)

● Historically used only by Advanced Persistent Threats (APTs),
BYOVD is now found in commodity threats too (ransomware)

https://blog.talosintelligence.com/exploring-vulnerable-windows-drivers/

Introduction to BYOVD

https://blog.talosintelligence.com/exploring-vulnerable-windows-drivers/

● UEFI firmware also relies on signature verification
when Secure Boot is active

● Secure Boot: only trusted and verified modules
are allowed to be executed

● Determination based on the content of NVRAM variables:

○ db → allowed signatures
○ dbx → revoked signatures

BYOVD + UEFI = ?

What is the impact
of BYOVD on UEFI?

1. Double-use modules: Trusted programs exposing a functionality
that can be misused to run untrusted code (e.g. the UEFI Shell)

2. Trusted but vulnerable modules: Trusted programs that contain
exploitable vulnerabilities (e.g. CVE-2025-3052)

3. Leaked private keys: Keys used in authentication that are
compromised, allowing attackers to sign malicious modules (e.g. PKfail)

4. Verification logic bugs: Bugs in the verification process itself that allows
an attacker to bypass verification (e.g. CVE-2025-6198)

5. Debug or incomplete features: Features intended for debugging
end up in production devices and allow to bypass authentication
(e.g. CVE-2021-0114)

Taxonomy of Attacks Against
Secure Boot

https://www.binarly.io/blog/signed-and-dangerous-byovd-attacks-on-secure-boot

High-level plan to identify double-use
and trusted but vulnerable modules:

1. Collect a comprehensive
dataset of UEFI modules

2. Determine which modules are
trusted by real-world firmware

3. Scan trusted modules to detect
double-use and trusted but
vulnerable modules

Identify BYOVD in the UEFI ecosystem

Large database of UEFI modules
● Sources:

○ Internal collection of UEFI firmware (gathered over 5+ years)
○ Private telemetry data (pk.fail detector)
○ Public threat intelligence feeds (VirusTotal)

● Indexed over 10 million modules

https://pk.fail

● Selected 4000 recent firmware images, covering most OEMs

● Identified which modules from the database are trusted by the
selected firmware images

● Results:
○ Discovered 7157 unique modules trusted by recent firmware
○ On average, firmware trusts 1500 modules, with peaks over

4000 modules

A vulnerability in any trusted
module can be used to bypass

Secure Boot on the device

Which UEFI Modules Are Trusted?

● Scanned modules with our platform to uncover issues in NVRAM
variable handling and beyond

● Automatically identified one vulnerability (CVE-2025-3052) in a
module signed with the Microsoft’s third-party UEFI certificate

● June Patch Tuesday: Microsoft added 14 modules to dbx

Trusted but Vulnerable Modules

● Focus on UEFI Shell: isolated incidents or ecosystem-wide issue?

● Large attack-surface, dangerous commands (mm) and scripts
executed at startup (startup.nsh)

Double-Use Modules

● Focus on UEFI Shell: isolated incidents or ecosystem-wide issue?

● Large attack-surface, dangerous commands (mm) and scripts
executed at startup (startup.nsh)

● Discovered 30 UEFI shells trusted by hundreds of devices

○ 29 shells are signed with an OEM certificate present in db
○ 1 shell is trusted because it’s Authenticode hash was added to db

● Disclosure with CERT/CC is ongoing, stay tuned for more details!

Double-Use Modules

● Core idea: use the mm command to overwrite gSecurity2

From Trusted Shell to
Untrusted Code Execution

We developed and tested a PoC:
1. From a privileged OS shell:

● Copy the trusted UEFI shell and a startup.nsh script
to the EFI System Partition

● Place a second unsigned UEFI module (the payload)
on the partition

● Configure the Boot Manager to run the UEFI shell
before the unsigned module

From Trusted Shell to
Untrusted Code Execution

We developed and tested a PoC:
2. After rebooting the device:

● The Boot Manager runs the UEFI shell

● The UEFI shell automatically executes startup.nsh,
which issues an mm command to zero gSecurity2

● The unsigned module containing the malicious
payload executes successfully

From Trusted Shell to
Untrusted Code Execution

http://www.youtube.com/watch?v=TnECRMf2CoQ

Pull Request on Tianocore EDK2 repo

https://www.supermicro.com/en/support/security_BMC_IPMI_Sept_2025

https://www.supermicro.com/en/support/security_BMC_IPMI_Sept_2025

● NVIDIA Offensive Security Research Team
disclosed 2 stack overflows and 1 design flaw
(CVE-2024-10237) in Supermicro BMC
firmware validation process

● Validation based on the fwmap table + signature
stored in the firmware image:

1. offset: 0x0000000, size:..., signed: true – bootloader
2. offset: 0x0100000, size:..., signed: true – sig_table
3. offset: 0x0110000, size:..., signed: true – pdb_seca
4. offset: 0x0130000, size:..., signed: true – kernel
5. offset: 0x0530000, size:..., signed: true – rootFS
6. offset: 0x2dc0000, size:..., signed: false – pdb_isec

● Attack found by NVIDIA OSRT: move sections in
the firmware image and update the fwmap:

1. offset: 0x0000000, size:..., signed: true – bootloader
2. offset: 0x0100000, size:..., signed: true – sig_table
3. offset: 0x0120000, size:..., signed: true – pdb_seca
4. offset: 0x0130000, size:..., signed: true – kernel
5. offset: 0x0573000, size:..., signed: true – rootFS
6. offset: 0x2dc0000, size:..., signed: false – pdb_isec

Firmware Validation Logic Bugs

● Supermicro added checks on
the offsets and attributes allowed
in the fwmap

● Can these checks still be bypassed?

● CVE-2025-7937: Add a custom
fwmap before the original one
containing a single element
(concatenation of all the regions)
and swap the bootloader with
a malicious one

1. offset: 0x100000, size:...,
signed: true – bootloader

FW Validation Bugs (CVE-2025-7937)

https://www.binarly.io/blog/broken-trust-fixed-supermicro-bmc-bug-gains-a-new-life-in-two-new-vulnerabilities
https://www.binarly.io/advisories/brly-2025-020
https://www.binarly.io/advisories/brly-2025-021

https://www.binarly.io/blog/broken-trust-fixed-supermicro-bmc-bug-gains-a-new-life-in-two-new-vulnerabilities
https://www.binarly.io/advisories/brly-2025-020
https://www.binarly.io/advisories/brly-2025-021

http://www.youtube.com/watch?v=26kctSgJoxs

● Verification of firmware images
is complex

● Secure Boot is a last line of defense
against firmware-level threats

● Large number of signed modules
in the wild → enrolling custom
certificates if Secure Boot
is a critical component

● Are UEFI-level threats coming?

Conclusions

https://www.welivesecurity.com/en/eset-research/introducing-hybridpetya-petya-notpetya-copycat-uefi-secure-boot-bypass/
https://x.com/hasherezade/status/1965389009175412769

https://www.welivesecurity.com/en/eset-research/introducing-hybridpetya-petya-notpetya-copycat-uefi-secure-boot-bypass/

Thank you

