
LogoFAIL

Fabio Pagani
Alex Matrosov
Yegor Vasilenko

Security implications
of image parsing
during system boot

Alex Ermolov
Sam Thomas
Anton Ivanov

RR

Research Scientist @ Binarly
◆ Vulnerability and Threat Research
◆ Program analysis

● Fuzzing, Dynamic analysis

Academic background
◆ PostDoc @ UCSB SecLab
◆ Looked at binary code from different

angles (binary similarity, fuzzing,
forensics)

$ whoami

© BINARLY.IO

Fabio Pagani
@pagabuc

http://binarly.io

Fabio Pagani
@pagabuc

Alex Matrosov
@matrosov

Yegor Vasilenko
@yeggorv

Sam Thomas
@xorpse

Anton Ivanov
@ant_av7

LogoFAIL [edition]

Alex Ermolov
@flothrone

Binarly REsearch Team

© BINARLY.IO

Inside the LogoFAIL
Vulnerabilities
(Video)

The Far-Reaching
Consequences of
LogoFAIL (Blog)

 Scan

http://binarly.io

● Insecure handling of content from
R/W areas (NVRAM)

● Allow bypassing Secure Boot and
hardware-based Verified Boot:
○ Intel Boot Guard
○ AMD Hardware-Validated Boot
○ ARM TrustZone-based

verification
● Lead to compromise of other

protections in Pre-EFI like Intel
PPAM

Breaking Firmware Trust From Pre-EFI:
Exploiting Early Boot Phases

© BINARLY.IO

Data-Only Attacks Against UEFI Firmware 🔥

https://i.blackhat.com/USA-22/Wednesday/US-22-Matrosov
-Breaking-Firmware-Trust-From-Pre-EFI.pdf

http://binarly.io
https://i.blackhat.com/USA-22/Wednesday/US-22-Matrosov-Breaking-Firmware-Trust-From-Pre-EFI.pdf
https://i.blackhat.com/USA-22/Wednesday/US-22-Matrosov-Breaking-Firmware-Trust-From-Pre-EFI.pdf

Exploring new Attack Surfaces 🔬
While looking at vulnerabilities discovered by our platform, we observed
that image parsers in firmware are actually quite common.

But why do we even
need image parsers
during boot?!

© BINARLY.IO

http://binarly.io

History Repeats Itself

Attacking Intel BIOS at BlackHat USA 2009 by Rafal Wojtczuk and Alexander Tereshkin

https://www.blackhat.com/presentations/bh-usa-09/WOJTCZUK/BHUSA09-Wojtczuk-AtkIntelBios-SLIDES.pdf

© BINARLY.IO

http://binarly.io

● Different image parsers available in UEFI firmware
○ BMP, GIF, PNG, JPEG, PCX, and TGA

● User can pass image data to them
○ Various logo customization features are available

● Image parsing is done during boot
○ DXE phase
○ C-written code (3rd party)
○ No mitigations for exploitation of software vulnerabilities

History Repeats Itself (~15 years later)

© BINARLY.IO

What could go wrong?!

http://binarly.io

Meet LogoFAIL

● New set of security vulnerabilities
affecting image parsing libraries
used during the device boot process

● LogoFAIL is cross-silicon and
impacts x86 and ARM-based
devices

● LogoFAIL is UEFI and IBV-specific

● Impacts the entire ecosystem
across this reference code and
device vendors

© BINARLY.IO

http://binarly.io

150+ days of embargo lifts TODAY

Meet LogoFAIL

● New set of security vulnerabilities
affecting image parsing libraries
used during the device boot process

● LogoFAIL is cross-silicon and
impacts x86 and ARM-based
devices

● LogoFAIL is UEFI and IBV-specific

● Impacts the entire ecosystem
across this reference code and
device vendors

© BINARLY.IO

http://binarly.io

Implications of LogoFAIL 💣
Attack Vector Vulnerability ID Exploited

in-the-wild Impact CVSS Score CWE

VU#811862
CVE-2023−40238
CVE-2023−5058
CVE-2023−39539
CVE-2023−39538
and more …

Unknown
HW-based Verified
Boot and Secure
Boot Bypass
x86 and ARM

8.2 High
6.7Medium

CWE-122:
Heap-based Buffer
Overflow

CWE-125:
Out-of-bounds Read

Baton Drop
CVE-2022−21894
CVE-2023−24932 Secure Boot Bypass

x86
6.7
Medium

CWE-358: Improperly
Implemented Security
Check for Standard

3rd-party
Bootloaders VU#309662 Unknown Secure Boot Bypass

x86
6.7
Medium

CWE-358: Improperly
Implemented Security
Check for Standard

BootHole VU#174059 Unknown Secure Boot Bypass
x86 8.2 High

CWE-120: Buffer Copy
without Checking Size
of Input

© BINARLY.IO

http://binarly.io

Attack
Surface

© BINARLY.IO

Attack Surface

Image
Parser

http://binarly.io

Different Shades of UEFI Image Parsers 🔬

© BINARLY.IO

http://binarly.io

● All the channels used by
firmware to read a logo image

● A lot of reversing with
efiXplorer

● Start from image parsers, then
looks “backwards”

Identifying the Attack Surface

https://github.com/binarly-io/efiXplorer

© BINARLY.IO

https://github.com/binarly-io/efiXplorer
http://binarly.io

Several OEM-specific customizations:

Attack Surface

https://binarly.io/advisories/BRLY-2023-006
https://binarly.io/advisories/BRLY-2023-018

© BINARLY.IO

1. Logo is read from a fixed location
(e.g., “\EFI\OEM\Logo.jpg”)

2. Logo is stored into an unsigned
volume of a firmware update

3. An NVRAM variable contains the
path of the logo

4. An NVRAM variable contains the
logo itself

https://binarly.io/advisories/BRLY-2022-041/index.html
https://binarly.io/advisories/BRLY-2022-041/index.html
http://binarly.io

Fuzzing

© BINARLY.IO

http://binarly.io

● UEFI DXE modules are normal
PE files

● The UEFI runtime environment
needed to re-hosted

● Fuzzer based on
newly-developed emulation
capabilities which we
integrated with LibAFL

Fuzzing UEFI Image Parsers

© BINARLY.IO

http://binarly.io

A bridge between the fuzzer and the fuzzed module:
● Module initialization (protocols are installed)

● Prepare call to parsing function

● Forwards fuzzer-generated data to the target module

Fuzzing Harness

We are ready to fuzz!

© BINARLY.IO

http://binarly.io

● We found hundreds
of crashes

● Extended Binarly's
internal program
analysis framework
to support us in this
task

Root Causes

© BINARLY.IO

http://binarly.io

Root Causes (Excerpt)

BRLY ID CERT/CC ID Affected
IBV

Image
Library Impact CVSS

Score CWE

BRLY-LOGOFAIL-2023-001 VU#811862 Insyde BMP
DXE Memory
Content
Disclosure

Medium CWE-200: Exposure of Sensitive
Information

BRLY-LOGOFAIL-2023-007 VU#811862 Insyde GIF DXE Memory
Corruption High CWE-122: Heap-based Buffer Overflow

BRLY-LOGOFAIL-2023-016 VU#811862 AMI PNG DXE Memory
Corruption High CWE-122: Heap-based Buffer Overflow

CWE-190: Integer Overflow

BRLY-LOGOFAIL-2023-022 VU#811862 AMI JPEG DXE Memory
Corruption High CWE-787: Out-of-bounds Write

BRLY-LOGOFAIL-2023-025 VU#811862 Phoenix BMP DXE Memory
Corruption High CWE-122: Heap-based Buffer Overflow

BRLY-LOGOFAIL-2023-029 VU#811862 Phoenix GIF DXE Memory
Corruption High CWE-125: Out-of-bounds Read

We found 29 unique root causes, 15 of which are likely exploitable

© BINARLY.IO

http://binarly.io

BRLY-LOGOFAIL-2023−006: Memory Corruption

● PixelHeight and PixelWidth are
attacker controlled

● When PixelHeight and i are 0:
BltBuffer[PixelWidth * -1]

● Arbitrary write anywhere below
BltBuffer

BMP parser developed by Insyde

© BINARLY.IO

http://binarly.io

BRLY-LOGOFAIL-2023−022: Memory Corruption

● Assumption that JPEG can
contain only 4 Huffman
Tables

● NumberOfHTs variable is
unchecked

● Overflow on global data
with pointers to our image JPEG parser developed by AMI

© BINARLY.IO

http://binarly.io

Takeaways from Fuzzing

None of these libraries where
ever fuzzed by IBVs/OEMs:

● We found crashes in every
parser

● First crashes where found
after seconds of fuzzing

● Some parsers even crash
with images downloaded
from the Internet :-)

© BINARLY.IO

http://binarly.io

Thanks to the Internet Archive!

● One of the parsers is for PCX
images

● Finding good corpus for the
fuzzer turned out to be more
difficult than expected

● Until..

https://archive.org/details/Universe_Of_PCX_1700_PCX_Files

© BINARLY.IO

http://binarly.io

© BINARLY.IO

Proof of concept

http://binarly.io

● Lenovo ThinkCentre
M70s Gen 2

● 11th Gen Intel Core
(Tiger Lake)

● BIOS released on
June 2023

Let’s PWN a Real Device

© BINARLY.IO

http://binarly.io

Selecting a Target

Simple format + exploitable crash: PNG parser from AMI

© BINARLY.IO

http://binarly.io

Selecting a Target

© BINARLY.IO

Simple format + exploitable crash: PNG parser from AMI

http://binarly.io

Selecting a Target

© BINARLY.IO

Simple format + exploitable crash: PNG parser from AMI

http://binarly.io

Integer Overflow to Heap Overflow

Integer overflow on 32 bit
value used as allocation size:
● 2 * 0x20 = 0x40
● 2 * 0x60 = 0xc0
● 2 * 0x80000040 = 0x80

© BINARLY.IO

http://binarly.io

Integer Overflow to Heap Overflow

Integer overflow on 32 bit
value used as allocation size:
● 2 * 0x20 = 0x40
● 2 * 0x60 = 0xc0
● 2 * 0x80000040 = 0x80

© BINARLY.IO

http://binarly.io

● How does heap exploitation even work for UEFI?

● No debugging capabilities:
○ Intel DCI doesn’t work on new CPU models
○ Intel Boot Guard prevents replacing modules

● Not even output on crash :(

Wait a Minute..

© BINARLY.IO

http://binarly.io

UEFI Heap Internals

● Pool-based heap

© BINARLY.IO

http://binarly.io

UEFI Heap Internals

● Pool-based heap VOID *p = AllocatePool(0x40)

© BINARLY.IO

http://binarly.io

UEFI Heap Internals

● Pool-based heap

FreePool(p)

© BINARLY.IO

http://binarly.io

What Are We Even Corrupting?

We don’t know!!

© BINARLY.IO

http://binarly.io

● Memory used by UEFI is not cleared
● If the OS doesn’t overwrite it, we can dump it after boot
● OutputBuffer is not freed, so it’s somewhere in memory!

Long Live UEFI Memory

© BINARLY.IO

http://binarly.io

● Memory used by UEFI is not cleared
● If the OS doesn’t overwrite it, we can dump it after boot
● OutputBuffer is not freed, so it’s somewhere in memory!

Long Live UEFI Memory

This is NOT the object
we can corrupt!

© BINARLY.IO

http://binarly.io

● New technique to preserve chunks
● Corrupting the signature ensures a

chunk is not reused

Preserving Heap Chunks

© BINARLY.IO

http://binarly.io

Preserving Heap Chunks

This IS the object we can
corrupt!!

© BINARLY.IO

http://binarly.io

Little Recap

What we achieved so far:
● We have arbitrary overflow on the heap
● We can prevent the next chunk from being freed
● We can inspect the object stored in the next chunk

What’s left?
● Finding a good target for corruption
● Get code execution out of it

© BINARLY.IO

http://binarly.io

Enter the UEFI Heap Feng Shui

● Heap exploitation often requires strong allocation
and deallocation primitives

● We can influence the heap by adding PNG chunks or
changing their sizes

© BINARLY.IO

http://binarly.io

Enter the UEFI Heap Feng Shui

● Heap exploitation often requires strong allocation
and deallocation primitives

● We can influence the heap by adding PNG chunks or
changing their sizes

© BINARLY.IO

http://binarly.io

PROTOCOL_ENTRY, tell me more..

● Protocols are a core
concept in UEFI

● PROTOCOL_ENTRY
has multiple pointers
to objects with
function pointers

© BINARLY.IO

http://binarly.io

● Events are generated when protocols are installed

UEFI Event System

© BINARLY.IO

http://binarly.io

● Memory region where NVRAM variables is
often executable and always mapped at the
same fixed address

● We can just store a shellcode there
● Our shellcode can:

○ Disable Secure Boot (zero a global variable)
○ Start a second-stage payload from disk:

■ Unload current NTFS driver (no write
support)

■ Load new NTFS driver (with write support)
■ Creates a file on the Windows filesystem

Arbitrary Code Exec in UEFI

© BINARLY.IO

http://binarly.io

Putting it All Together

● Preparation:
1. Malicious PNG on the ESP (or in NVRAM)

2. PROTOCOL_NOTIFY, IEVENT and Shellcode in NVRAM
3. Second-stage payload on disk:

\Users\user\LogoFAIL\SecondStageWin.efi
● Reboot the system
● UEFI firmware will parse our PNG
● Heap overflow corrupts a PROTOCOL_ENTRY with

pointers to PROTOCOL_NOTIFY and IEVENT
● When the protocol will be installed, we achieve

arbitrary code execution
● Shellcode + Second stage payload execution

© BINARLY.IO

http://binarly.io

Demo

https://www.youtube.com/watch?v=EufeOPe6eqk

© BINARLY.IO

http://binarly.io

http://www.youtube.com/watch?v=EufeOPe6eqk

● Majority of UEFI firmware contains
vulnerable images parsers

● Hundreds of devices from Lenovo,
Intel and Acer allow logo
customizations thus are exploitable

● Doesn’t require any physical access
to the device

● Targets UEFI specific code that
affects both x86 and ARM devices

● Modern “below-the-OS” defenses,
such as Secure Boot are completely
ineffective against it

© BINARLY.IO

LogoFAIL

http://binarly.io

Thanks to CERT/CC for coordinating this
massive industry-wide disclosure! 🙏

© BINARLY.IO

http://binarly.io

Phoenix Technology

*https://webcache.googleusercontent.com/search?q=cache:cWlnW4oat9sJ:https://www.phoenix.com/security-notifications/cve-2023-5058/© BINARLY.IO

http://binarly.io

That’s all folks, thank you
for your attention...

... and don’t forget to update your firmware!

© BINARLY.IO

http://binarly.io

