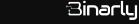
LogoFAIL

Security implications of image parsing during system boot

Fabio Pagani Alex Matrosov Yegor Vasilenko Alex Ermolov Sam Thomas Anton Ivanov

\$ whoami


Fabio Pagani @pagabuc

Research Scientist @ Binarly

- Vulnerability and Threat Research
- Program analysis
 - Fuzzing, Dynamic analysis

Academic background

- PostDoc @ UCSB SecLab
- Looked at binary code from different angles (binary similarity, fuzzing, forensics)

Binarly REsearch Team 🗔

Fabio Pagani @pagabuc

Alex Matrosov @matrosov

Yegor Vasilenko @yeggorv

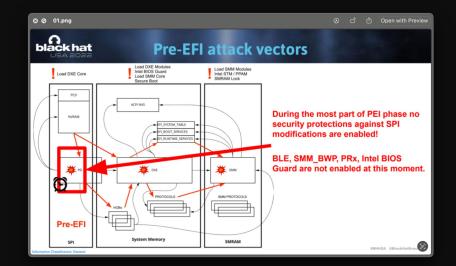
Alex Ermolov @flothrone

Sam Thomas @xorpse

Anton Ivanov @ant_av7

LogoFAIL [edition]

Binarly



The Far-Reaching Consequences of LogoFAIL (Blog) Inside the LogoFAIL Vulnerabilities (Video)

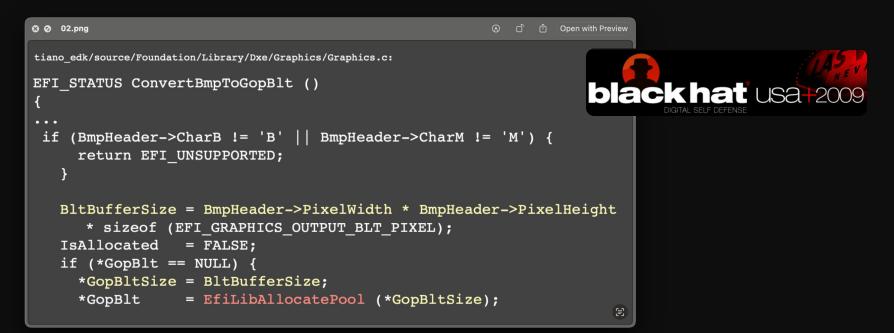
Data-Only Attacks Against UEFI Firmware 🔥

- Insecure handling of content from R/W areas (NVRAM)
- Allow bypassing Secure Boot and hardware-based Verified Boot:
 - o Intel Boot Guard
 - AMD Hardware-Validated Boot
 - ARM TrustZone-based verification
- Lead to compromise of other protections in Pre-EFI like Intel PPAM

Breaking Firmware Trust From Pre-EFI: Exploiting Early Boot Phases

<u>https://i.blackhat.com/USA-22/Wednesday/US-22-Matrosov</u> <u>-Breaking-Firmware-Trust-From-Pre-EFI.pdf</u>

Binarly


Exploring new Attack Surfaces 🔬

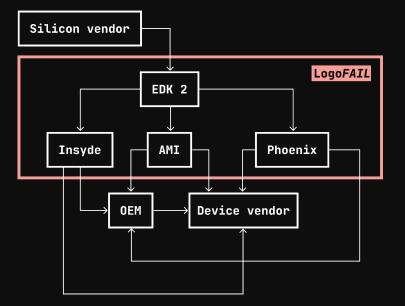
While looking at vulnerabilities discovered by our platform, we observed that image parsers in firmware are actually quite common.

But why do we even need image parsers during boot?!

History Repeats Itself

Attacking Intel BIOS at BlackHat USA 2009 by Rafal Wojtczuk and Alexander Tereshkin https://www.blackhat.com/presentations/bh-usa-09/W0JTCZUK/BHUSA09-Wojtczuk-AtkIntelBios-SLIDES.pdf

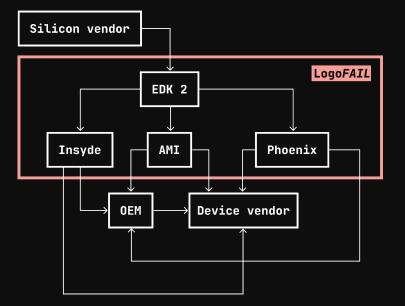
History Repeats Itself (~15 years later)


- Different image parsers available in UEFI firmware
 - BMP, GIF, PNG, JPEG, PCX, and TGA
- User can pass image data to them
 - Various logo customization features are available
- Image parsing is done during boot
 - **DXE phase**
 - C-written code (3rd party)
 - No mitigations for exploitation of software vulnerabilities

Binarly

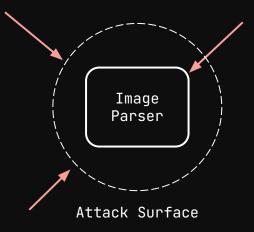
What could go wrong?!

Meet LogoFAIL


- New set of security vulnerabilities affecting image parsing libraries used during the device boot process
- LogoFAIL is cross-silicon and impacts x86 and ARM-based devices
- LogoFAIL is UEFI and IBV-specific
- Impacts the entire ecosystem across this reference code and device vendors

Meet LogoFAIL

- New set of security vulnerabilities affecting image parsing libraries used during the device boot process
- LogoFAIL is cross-silicon and impacts x86 and ARM-based devices
- LogoFAIL is UEFI and IBV-specific
- Impacts the entire ecosystem across this reference code and device vendors


150+ days of embargo lifts TODAY

Implications of LogoFAIL 🍏

Attack Vector	Vulnerability ID	Exploited in-the-wild	Impact	CVSS Score	CWE	
	VU#811862 CVE-2023-40238 CVE-2023-5058 CVE-2023-39539 CVE-2023-39538 and more	Unknown	HW-based Verified Boot and Secure Boot Bypass x86 and ARM	8.2 High 6.7Medium	CWE-122: Heap-based Buffer Overflow CWE-125: Out-of-bounds Read	
Baton Drop	CVE-2022-21894 CVE-2023-24932	() () () () () () () () () ()	Secure Boot Bypass x86	6.7 Medium	CWE-358: Improperly Implemented Security Check for Standard	
3rd-party Bootloaders	VU#309662	Unknown	Secure Boot Bypass x86	6.7 Medium	CWE-358: Improperly Implemented Security Check for Standard	
BootHole	VU#174059	Unknown	Secure Boot Bypass x86	8.2 High	CWE-120: Buffer Copy without Checking Size of Input	

Attack Surface

© BINARLY.IO

Different Shades of UEFI Image Parsers 🔬

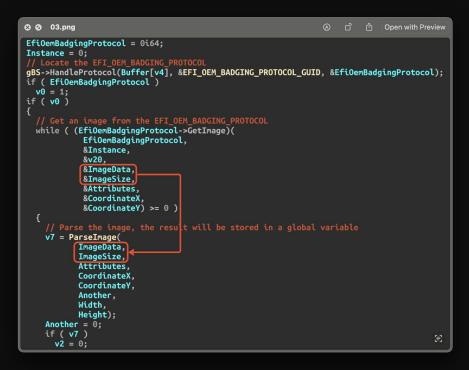
BmpDecoderDxe-A9F634A5-29F1-4456-A9D5-6E24B88BDB65 TgaDecoderDxe-ADCCA887-5330-414A-81A1-5B578146A397 PngDecoderDxe-C1D5258B-F61A-4C02-9293-A005BEB3EAA1 JpegDecoderDxe-2707E46D-DBD7-41C2-9C04-C9FDB8BAD86C PcxDecoderDxe-A8F634A5-28F1-4456-A9D5-7E24B99BDB65 GifDecoderDxe-1353DE63-B74A-4BEF-80FD-2C5CFA83040B

SystemImageDecoderDxe-5F65D21A-8867-45D3-A41A-526F9FE2C598

AMITSE-B1DA0ADF-4F77-4070-A88E-BFFE1C60529A

MdeModulePkg/Library/BaseBmpSupportLib/BmpSupportLib.c

Ginsyde



Binarly

Identifying the Attack Surface

- All the channels used by firmware to read a logo image
- A lot of reversing with efiXplorer
- Start from image parsers, then looks "backwards"

https://github.com/binarly-io/efiXplorer

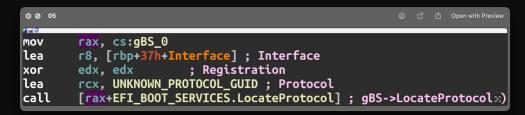
Attack Surface

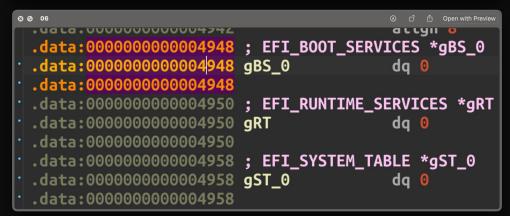
Several OEM-specific customizations:

- 1. Logo is read from a fixed location (e.g., "\EFI\OEM\Logo.jpg")
- 2. Logo is stored into an unsigned volume of a firmware update
- 3. An NVRAM variable contains the path of the logo
- 4. An NVRAM variable contains the logo itself

8 0	ð 04.png				⊘ ⊡ੈ ⊡ੈ Open with Preview
Na	me	Action	Туре	Subtype	Text
≁ I	JEFI image		Image	UEFI	
,	AmiNvramMainRomAreaGu		Volume	FFSv2	Unsigned Section
	Padding		Padding	Empty (0xFF)	Unsigned Section
	D264B94D-3D8D-4DC0-B1		Volume	FFSv2	
	05CA020B-0FC1-11DC-9		File	Raw	AMI ROM hole
IL	Volume free space		Free space		
)	4F1C52D3-D824-4D2A-A2		Volume	FFSv2	
	AFDD39F1-19D7-4501-A7		Volume	FFSv2	
	5B08A058-784F-4938-9A		Volume	FFSv2	
	EfiFirmwareFileSystem		Volume	FFSv2	
	14E428FA-1A12-4875-B6		Volume	FFSv2	
	EfiFirmwareFileSystem		Volume	FFSv2	
	7BEBD21A-A1E5-4C4C-9C		Volume	FFSv2	
•	52F1AFB6-78A6-448F-82		Volume	FFSv2	
	61C0F511-A691-4F54-97		Volume	FFSv2	
	7BEBD21A-A1E5-4C4C-9C		Volume	FFSv2	
	52F1AFB6-78A6-448F-82		Volume	FFSv2	
	61C0F511-A691-4F54-97		Volume	FFSv2	
•	9F8B1DEF-B62B-45F3-82		Volume	FFSv2	

https://binarly.io/advisories/BRLY-2023-006 https://binarly.io/advisories/BRLY-2023-018





© BINARLY.IO

Fuzzing UEFI Image Parsers

- UEFI DXE modules are normal PE files
- The UEFI runtime environment needed to re-hosted
- Fuzzer based on newly-developed emulation capabilities which we integrated with LibAFL

Fuzzing Harness

A bridge between the fuzzer and the fuzzed module:

- Module initialization (protocols are installed)
- Prepare call to parsing function
- Forwards fuzzer-generated data to the target module

We are ready to fuzz!

Root Causes

• We found hundreds of crashes

 Extended Binarly's internal program analysis framework to support us in this task

LogoFAIL fuzzer (0.1.0)							speed	g swi corpus	objective	es.			
rgeneric								speed ch	art				
run time			0h-0m	-30				651	exec/se				
clients			1					0.51	exec, se				
executions			1967										
exec/sec			647										
rclient #1 (l/u	r arrows to	switch)											
								325					
								325					
								0		• • • • • • • • • • • • •			time
								0h-0m-0s				0h-0m-1s	0h-0m-3s
clients logs				20		4522		. CAO E		2420 /05520	(
										3420/65536			
										3420/65536 3454/65536			
										3454/65536			
										3454/65536	(5%)		
										3454/65536			
										3454/65536			
											(5%)		
	#01 corpus:	63. obi	ectives:	39. exe	cutions:	1535.	exec/set	: 649.9	edges:		(5%)		
											(5%)		
										3491/65536	(5%)		
	#0] corpus:	65, obj	ectives:	39, exe	ecutions:	1545,	exec/set	:: 650.8,	, edges:	3491/65536			
										3491/65536			
										3491/65536			
										3505/65536			
											(5%)		
										3516/65536	(5%)		
										3516/65536	(5%)		
										3586/65536			
	#0] corpus:	09, 00]	ectives:	39, exe	cutions:	1554,	exec/se	650.6,	, edges:	3586/65536	(5%)		
[Stats #										3607/65536			
ETectore .										3607/65536 3630/65536			
[Stats a													
[Stats a [Testcase a	#0] corpus:								euges.				
[Stats = [Testcase = [Stats =	#0] corpus: #0] corpus:	71, obj	ectives:					· 650 0	ednes	3644/65526	(5%)		
[Stats = [Testcase = [Stats = [Testcase =	#0] corpus: #0] corpus: #0] corpus:	71, obj 72, obj	ectives: ectives:	39, exe	ecutions:	1583,	exec/set			3644/65536			
[Stats = = [Testcase = = [Stats = = [Testcase = = [Stats = =	#0] corpus: #0] corpus: #0] corpus: #0] corpus:	71, obj 72, obj 72, obj	ectives: ectives: ectives:	39, exe 39, exe	cutions: cutions:	1583, 1583,	exec/sec	: 646.3	, edges:	3658/65536	(5%)		
[Stats = [Testcase = [Stats = [Testcase = [Stats = [Testcase =	#0] corpus: #0] corpus: #0] corpus: #0] corpus: #0] corpus:	71, obj 72, obj 72, obj 73, obj	ectives: ectives: ectives: ectives:	39, exe 39, exe 39, exe	ecutions: ecutions: ecutions:	1583, 1583, 1595,	exec/set exec/set exec/set	: 646.3 : 651.2	, edges: , edges:	3658/65536 3658/65536	(5%) (5%)		
[Stats = [Testcase = [Stats = [Stats = [Stats = [Testcase = [Stats = [Stats =	#0] corpus: #0] corpus: #0] corpus: #0] corpus: #0] corpus:	71, obj 72, obj 72, obj 73, obj 73, obj	ectives: ectives: ectives: ectives: ectives:	39, exe 39, exe 39, exe 39, exe	cutions: cutions: cutions: cutions:	1583, 1583, 1595, 1595,	exec/sec exec/sec exec/sec exec/sec	: 646.3 : 651.2 : 636.0	, edges: , edges: , edges:	3658/65536 3658/65536 3658/65536	(5%) (5%) (5%)		

Binarly

Root Causes (Excerpt)

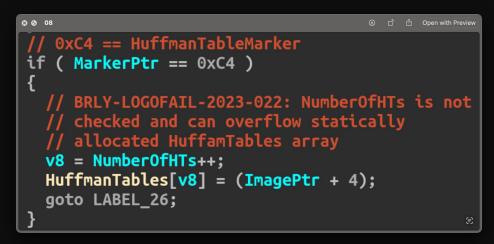
We found 29 unique root causes, 15 of which are likely exploitable

BRLY ID	CERT/CC ID	Affected IBV	Image Library	Impact	CVSS Score	CWE
BRLY-LOGOFAIL-2023-001	VU#811862	Insyde	BMP	DXE Memory Content Disclosure	Medium	CWE-200: Exposure of Sensitive Information
BRLY-LOGOFAIL-2023-007	VU#811862	Insyde	GIF	DXE Memory Corruption	High	CWE-122: Heap-based Buffer Overflow
BRLY-LOGOFAIL-2023-016	VU#811862	AMI	PNG	DXE Memory Corruption	High	CWE-122: Heap-based Buffer Overflow CWE-190: Integer Overflow
BRLY-LOGOFAIL-2023-022	VU#811862	AMI	JPEG	DXE Memory Corruption	High	CWE-787: Out-of-bounds Write
BRLY-LOGOFAIL-2023-025	VU#811862	Phoenix	BMP	DXE Memory Corruption	High	CWE-122: Heap-based Buffer Overflow
BRLY-LOGOFAIL-2023-029	VU#811862	Phoenix	GIF	DXE Memory Corruption	High	CWE-125: Out-of-bounds Read

Binarly

BRLY-LOGOFAIL-2023-006: Memory Corruption

- PixelHeight and PixelWidth are attacker controlled
- When PixelHeight and i are O: BltBuffer[PixelWidth * -1]
- Arbitrary write anywhere below BltBuffer


```
Q Q 07
PixelHeight = BmpHeader->PixelHeight:
EndOfBMP = 0;
for ( i = 0i64; i <= PixelHeight; ++i )</pre>
 if ( EndOfBMP )
    break:
  PixelWidth = BmpHeader->PixelWidth:
  v11 = 0i64:
     when BmpHeader->PixelHeight is 0 Blt will be below BltBuffer
     then, writes to the Blt buffer will happen
 Blt = &BltBuffer[PixelWidth * (PixelHeight - i - 1)];
  do
    if ( v12 )
      break:
    FirstByte = *RLE8Image:
    v15 = RLE8Image + 1;
    SecondByte = RLE8Image[1];
    RLE8Image += 2;
    if ( FirstBvte )
      Count = FirstBvte:
      v11 += FirstByte;
       Blt->Red = BmpColorMap[SecondByte].Red;// arbitrary write
        Blt->Green = BmpColorMap[SecondByte].Green;// arbitrary write
        Blt->Blue = BmpColorMap[SecondByte].Blue;// arbitrary write
        --Count:
      while ( Count ):
```

Binarlu

BMP parser developed by Insyde

BRLY-LOGOFAIL-2023-022: Memory Corruption

- Assumption that JPEG can contain only 4 Huffman Tables
- NumberOfHTs variable is unchecked
- Overflow on global data with pointers to our image

JPEG parser developed by AMI

Takeaways from Fuzzing

None of these libraries where ever fuzzed by IBVs/OEMs:

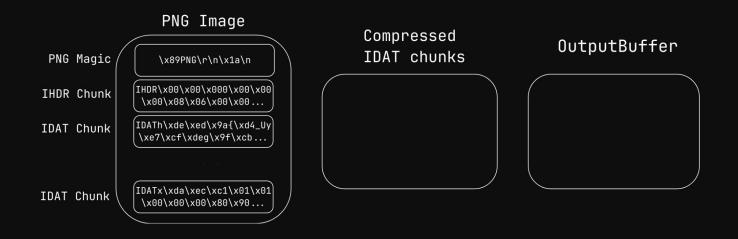
- We found crashes in every parser
- First crashes where found after seconds of fuzzing
- Some parsers even crash with images downloaded from the Internet :-)

Thanks to the Internet Archive!

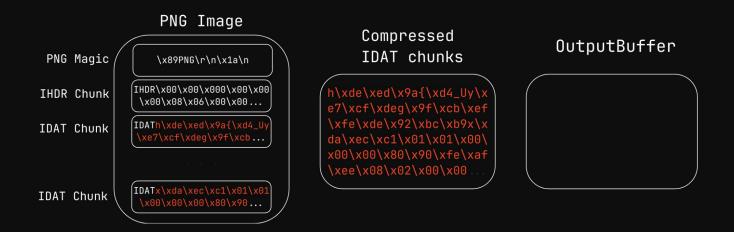
- One of the parsers is for PCX images
- Finding good corpus for the fuzzer turned out to be more difficult than expected
- Until..

https://archive.org/details/Universe_Of_PCX_1700_PCX_Files

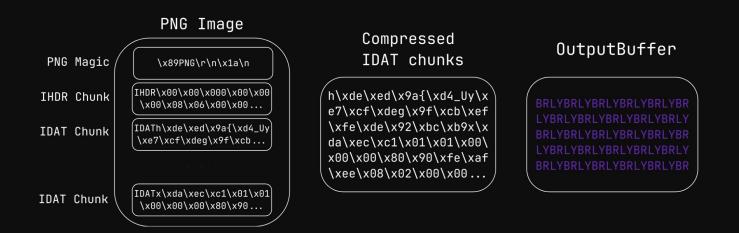
Proof of concept


Let's PWN a Real Device

- Lenovo ThinkCentre M70s Gen 2
- 11th Gen Intel Core (Tiger Lake)
- BIOS released on June 2023


Selecting a Target

Simple format + exploitable crash: PNG parser from AMI


Selecting a Target

Simple format + exploitable crash: PNG parser from AMI

Selecting a Target

Simple format + exploitable crash: PNG parser from AMI

Integer Overflow to Heap Overflow

Integer overflow on 32 bit value used as allocation size:

- $2 * 0 \times 20$ = 0×40
- $2 * 0 \times 60 = 0 \times c0$
- $2 * 0 \times 8000040 = 0 \times 80$

// BRLY-LOGOFAIL-2023-016: Integer overflow
// on the argument of EfiLibAllocateZeroPool
OutputBuffer = EfiLibAllocateZeroPool(2 * PngWidth)
v7 = &OutputBuffer[PngWidth];
GlobalInfo.OutputBuffer = OutputBuffer;

Compressed IDAT chunks

h\xde\xed\x9a{\xd4_Uy\x
e7\xcf\xdeg\x9f\xcb\xef
\xfe\xde\x92\xbc\xb9x\x
da\xec\xc1\x01\x01\x00\
x00\x00\x80\x90\xfe\xaf
\xee\x08\x02\x00\x00...

OutputBuffer

BRLYBRLYBRLYBRLYBRLYBRLYBR LYBRLYBRLYBRLYBRLYBRLYBRLYBR BRLYBRLYBRLYBRLYBRLYBR LYBRLYBRLYBRLYBRLYBRLYBR BRLYBRLYBRLYBRLYBRLYBR

Binarly

Integer Overflow to Heap Overflow

Integer overflow on 32 bit value used as allocation size:

- $2 * 0 \times 20$ = 0×40
- $2 * 0 \times 60 = 0 \times c0$
- $2 * 0 \times 8000040 = 0 \times 80$

// BRLY-LOGOFAIL-2023-016: Integer overflow
// on the argument of EfiLibAllocateZeroPool
OutputBuffer = EfiLibAllocateZeroPool(2 * PngWidth)
v7 = &OutputBuffer[PngWidth];
GlobalInfo.OutputBuffer = OutputBuffer;

GlobalInfo.OutputBuffer[GlobalInfo.idx] = a1;

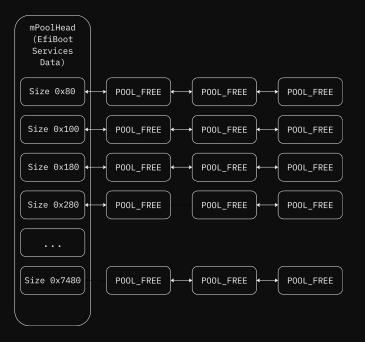

Compressed IDAT chunks

OutputBuffer

h\xde\xed\x9a{\xd4_Uy\x e7\xcf\xdeg\x9f\xcb\xef \xfe\xde\x92\xbc\xb9x\x da\xec\xc1\x01\x01\x00\ x00\x00\x80\x90\xfe\xaf \xee\x08\x02\x00\x00...

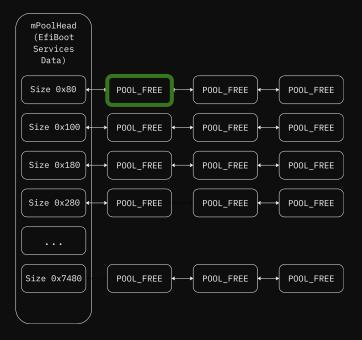
Wait a Minute...

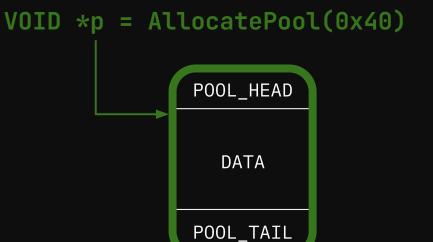
- How does heap exploitation even work for UEFI?
- No debugging capabilities:
 - Intel DCI doesn't work on new CPU models
 - Intel Boot Guard prevents replacing modules
- Not even output on crash :(



UEFI Heap Internals

Pool-based heap

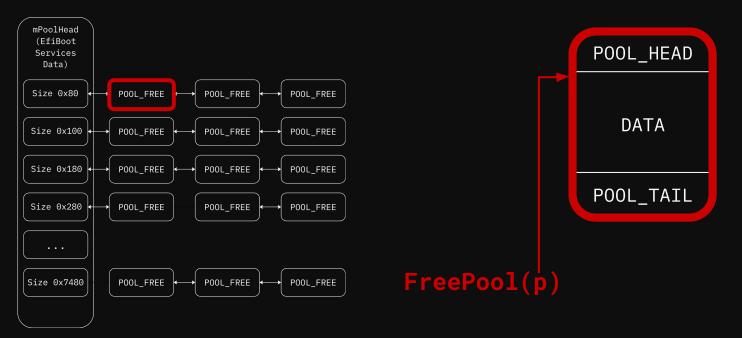




© BINARLY.IO

UEFI Heap Internals

Pool-based heap

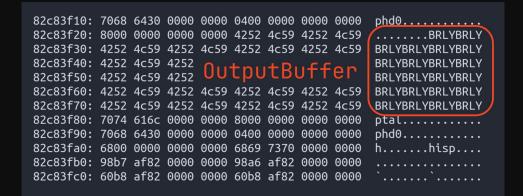


© BINARLY.IO

UEFI Heap Internals

• Pool-based heap

What Are We Even Corrupting?

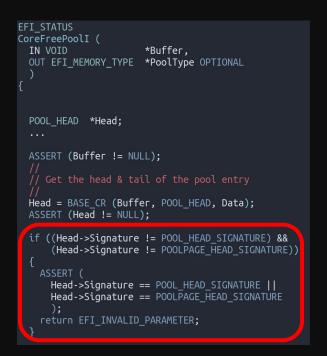

We don't know!!

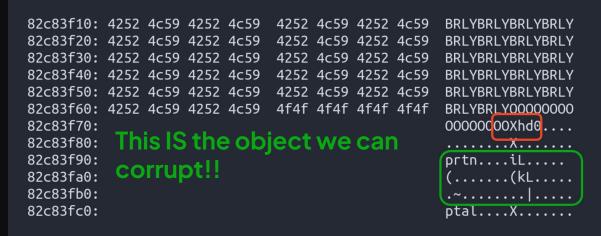
Long Live UEFI Memory

- Memory used by UEFI is not cleared
- If the OS doesn't overwrite it, we can dump it after boot
- OutputBuffer is not freed, so it's somewhere in memory!

Long Live UEFI Memory

- Memory used by UEFI is not cleared
- If the OS doesn't overwrite it, we can dump it after boot
- **OutputBuffer** is not freed, so it's somewhere in memory!


82c83f10: 7068 6430 0000 0000 0400 0000 0000 0000 phd0..... 82c83f20: 8000 0000 0000 0000 4252 4c59 4252 4c59BRLYBRLY 82c83f30: 4252 4c59 4252 4c59 4252 4c59 4252 4c59 BRLYBRLYBRLYBRLY 82c83f40: 4252 4c59 4252 4c59 4252 4c59 4252 4c59 BRLYBRLYBRLYBRLY 82c83f50: 4252 4c59 4252 4c59 4252 4c59 4252 4c59 BRI YBRI YBRI YBRI Y 82c83f60: 4252 4c59 4252 4c59 4252 4c59 4252 4c59 BRLYBRLYBRLYBRLY 82c83f70: 4252 4c59 4252 4c59 4252 4c59 4252 4c59 BRLYBRLYBRLYBRLY 82c83f80: ptal.... This is NOT the object 82c83f90: phd0..... 82c83fa0: h....hisp.... 82c83fb0: we can corrupt! 82c83fc0:


Preserving Heap Chunks

- New technique to preserve chunks
- Corrupting the signature ensures a chunk is not reused

Preserving Heap Chunks

Binarly

Little Recap

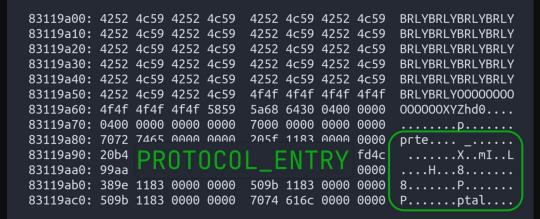
What we achieved so far:

- We have arbitrary overflow on the heap
- We can prevent the next chunk from being freed
- We can inspect the object stored in the next chunk

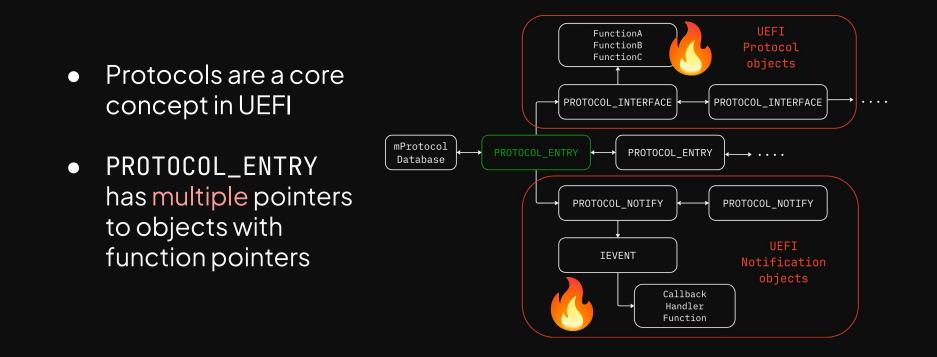
Binarlu

What's left?

- Finding a good target for corruption
- Get code execution out of it

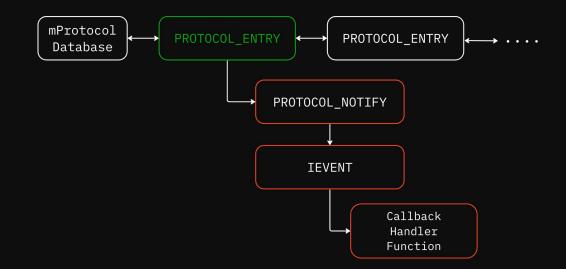

Enter the UEFI Heap Feng Shui

- Heap exploitation often requires strong allocation and deallocation primitives
- We can influence the heap by adding PNG chunks or changing their sizes



Enter the UEFI Heap Feng Shui

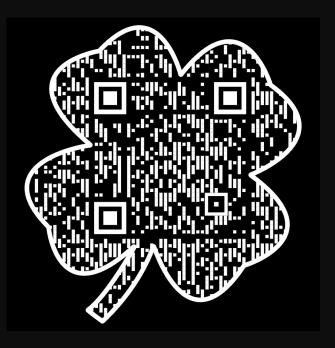
- Heap exploitation often requires strong allocation and deallocation primitives
- We can influence the heap by adding PNG chunks or changing their sizes


PROTOCOL_ENTRY, tell me more...

UEFI Event System

• Events are generated when protocols are installed

Arbitrary Code Exec in UEFI


- Memory region where NVRAM variables is often executable and always mapped at the same fixed address
- We can just store a shellcode there
- Our shellcode can:
 - Disable Secure Boot (zero a global variable)
 - Start a second-stage payload from disk:
 - Unload current NTFS driver (no write support)
 - Load new NTFS driver (with write support)
 - Creates a file on the Windows filesystem

Putting it All Together

- Preparation:
 - 1. Malicious PNG on the ESP (or in NVRAM)
 - 2. PROTOCOL_NOTIFY, IEVENT and Shellcode in NVRAM
 - 3. Second-stage payload on disk: \Users\user\LogoFAIL\SecondStageWin.efi
- Reboot the system
- UEFI firmware will parse our PNG
- Heap overflow corrupts a PR0T0C0L_ENTRY with pointers to PR0T0C0L_N0TIFY and IEVENT
- When the protocol will be installed, we achieve arbitrary code execution
- Shellcode + Second stage payload execution

Demo

https://www.youtube.com/watch?v=Eufe0Pe6eqk

🗇 📓 Ankisiopa mishaa taa 👘 🕂 🤟

Windows Presentents. Copyright ICS Hisronach Companylian. 301 rights reserved.

SUPLIT: The Latist: Powershelly Are non Features and Sappiverental Attact (Mate ALPONGNESS

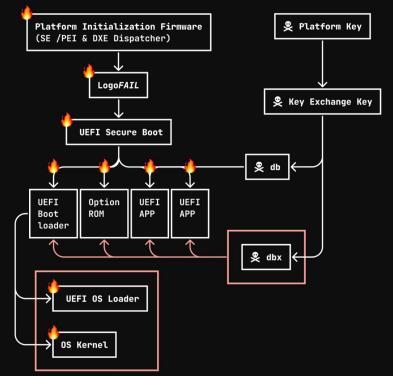
HE CONSERVITATION OF A AND ALL AND A AND A

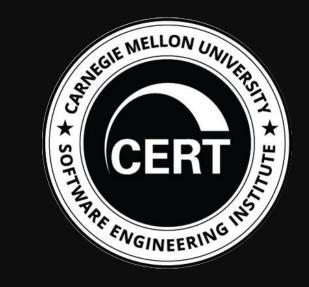
HACEHOLD BOARD

DISFIEL BEALED

PD \$19944441.seeflagerkt.s gathe .1199441_PUC.86

assures: chipes: chuits win be used of tot turtion; unwitte: Il should not be lectribuliyinglayed on pinduribue and-user spiles. unwitte: for unbloc and


[+] Bulliting Gellande song SysterCable & Holidivitit


LogoFAIL

- Majority of UEFI firmware contains vulnerable images parsers
- Hundreds of devices from Lenovo, Intel and Acer allow logo customizations thus are exploitable
- Doesn't require any physical access to the device
- Targets UEFI specific code that affects both x86 and ARM devices
- Modern "below-the-OS" defenses, such as Secure Boot are completely ineffective against it

UEFI Secure Boot Root of Trust

Binarly

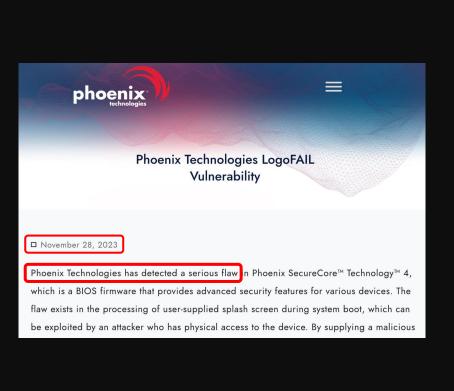
Thanks to CERT/CC for coordinating this massive industry-wide disclosure!

Phoenix Technology 👳

Jake Williams @MalwareJake

Shame on you @PhoenixFirmware - embargoes exist for a reason.

If you're a hardware or software vendor not openly shaming them for this behavior, you're not playing the long game.


It looks like Phoenix Technologies (@PhoenixFirmware) has jumped the gun

You want full disclosure? This is how you get full disclosure...

曫 Alex Matrosov 🤣 @matrosov 🛛 Dec 1

and broken the #LogoFAIL embargo.

Binarly

© BINARLY.IO

That's all folks, thank you for your attention...

... and don't forget to update your firmware!

