Regulator: Dynamic Analysis to Detect ReDoS

Robert McLaughlin, Fabio Pagani, Noah Spahn, Christopher Kruegel, Giovanni Vigna
University of California, Santa Barbara
{robert349, pagani, ncs, chris, vigna}@cs.ucsb.edu

Abstract

Regular expressions (regexps) are a convenient way for
programmers to express complex string searching logic. Sev-
eral popular programming languages expose an interface to a
regexp matching subsystem, either by language-level primi-
tives or through standard libraries. The implementations be-
hind these matching systems vary greatly in their capabilities
and running-time characteristics. In particular, backtracking
matchers may exhibit worst-case running-time that is either
linear, polynomial, or exponential in the length of the string
being searched. Such super-linear worst-case regexps expose
applications to Regular Expression Denial-of-Service (Re-
DoS) when inputs can be controlled by an adversarial attacker.

In this work, we investigate the impact of ReDoS in back-
tracking engines, a popular type of engine used by most
programming languages. We evaluate several existing tools
against a dataset of broadly collected regexps, and find that
despite extensive theoretical work in this field, none are able
to achieve both high precision and high recall. To address this
gap in existing work, we develop REGULATOR, a novel dy-
namic, fuzzer-based analysis system for identifying regexps
vulnerable to ReDoS. We implement this system by directly
instrumenting a popular backtracking regexp engine, which
increases the scope of supported regexp syntax and features
over prior work. Finally, we evaluate this system against three
common regexp datasets, and demonstrate a seven-fold in-
crease in true positives discovered when comparing against
existing tools.

1 Introduction

Regular expressions (regexps) are a powerful means of ex-
pressing complex string manipulation and search operations.
Nowadays, regexps are extensively used for a wide variety
of purposes, including (but not limited to) data sanitization,
intrusion detection systems [15,46], DNA sequence process-
ing [44, 51], and general-purpose string searching. Previ-
ous large-scale community studies reveal that regexps are

not only widely known by software developers, but they are
also quite popular: 30% to 40% of packages in Python and
JavaScript repositories contains at least one regular expres-
sion, with an average of two and six regexps per module,
respectively [9, 20, 28].

However, despite their popularity and practicality, writing
correct regexps represents a challenge for most software de-
velopers and maintainers. In the past few years, several studies
have shown how regexps are difficult to comprehend and com-
pose, even among experienced users [12,21,29,55]. While
several web-based tools and debuggers — purposely created
to assist in visualizing and explaining regular expressions —
are available [3, 11,31], users still struggle to compose cor-
rect regexps even when using these tools [12]. To overcome
these difficulties, users often resort to reusing regexps from
online knowledge-bases such as RegExLib [7], or question-
answer websites such as Stack Overflow [12,29]. Unfortu-
nately, this is not always a successful strategy, since regexps
are not generally portable across platforms: minor variations
in syntax, semantics, and run-time performance can lead to
issues including compilation errors and unexpected matching
behavior [29].

To make matters worse, matching systems that follow a
backtracking construction — such as those found in the stan-
dard libraries of Java, Python, Perl, Ruby, and JavaScript —
can exhibit worst-case performance that is super-linear in the
size of the input (subject) string length [29]. Malicious attacks
triggering this worst-case behavior are known as Regular Ex-
pression Denial-of-Service (ReDoS). Such attacks belong to
the class of algorithmic complexity attacks, where a malicious
input causes a Denial of Service (DoS). ReDoS attacks are
particularly impactful in web contexts, and a recent measure-
ment shows that a significant number of websites and web
applications are affected by this problem [56]. For instance,
in the past few years, multiple incidents related to ReDoS
caused extended outages in major online applications and
services [35,57].

Evaluating the worst case run-time performance of a reg-
ular expression is not a straightforward task. For example,

a seemingly innocuous regular expression (such as \s+$ or
\d+1\d+2) can lead to catastrophic backtracking when an at-
tacker supplies a carefully crafted string. Moreover, precisely
detecting a vulnerable regexp does not only require a deep
understanding of how backtrack matching works, but also
requires an intimate knowledge of the internals of the specific
matching engine on which the regexp is run. This is because
regular expressions are not, in practice, evaluated as-is: they
are first converted into an intermediary form, undergo several
stages of optimization, and are re-emitted in a format useful
for lightweight execution. In particular, regexp engines in the
family of Spencer-style implementations emit a form of byte-
code, which is executed by an interpreter when the matching
procedure is invoked with a particular input string.

Previous research on detecting ReDoS vulnerabilities is
based on either static modeling of a representative model [41,
64, 65], or dynamic analysis by fuzzing [39, 47]. Unfortu-
nately, model-based systems are not currently able to capture
all extended features of regular expressions, and, more impor-
tantly, fail to reflect the low-level details of matching engines.
Moreover, regular expression are not a stale technology; new
features are continuously proposed and added to popular en-
gines [18]. This represents a problem for static analyzers,
because every time a new feature is added, more research is
needed to extend these systems. To summarize, no tool makes
claims toward completeness or soundness: whether real im-
plementations of regexp engines differ significantly from the
idealized models remains an open question.

Another line of research is based on fuzzing, and it focuses
on the broader problem of identifying inputs that maximize
the algorithm complexity of a given program. Since these
systems interact with the real implementation of a regexp en-
gine, they are not affected by the problem of missing features.
On the other hand, the fuzzers proposed in prior research are
typically general-purpose tools, and their fuzzing logic is un-
able to effectively leverage the interpreter-based architecture
implemented in modern engines. Moreover, the results from
fuzzing are difficult to interpret, as users must manually deter-
mine how the worst-case performance grows as string length
increases.

To address this gap in research, we introduce REGULATOR,
a novel dynamic analysis system for detecting ReDoS vul-
nerabilities. Our system directly instruments a given regexp
engine to track its behavior while matching a subject string,
and it leverages (and guides) a fuzzer to create inputs with in-
creasingly worse run-time performance. To quickly discover
a string that demonstrates a ReDoS attack, REGULATOR’s
custom fuzzer uses domain-specific mutation strategies. This
approach improves on previous research based on automata
analysis, because our tool does not rely on any assumptions
or approximations of the underlining matching engine, and
it supports by design any regexp feature implemented in the
matching engine.

To highlight REGULATOR’s performance, we evaluate our
system on three popular datasets used in previous work (Cor-
pus [20], RegexLib [7] and Snort [8]), and we also analyze
more than 40,000 regexps gathered from the 10,000 most
popular packages of the npm repository. Our results show
a seven-fold increase in the number of vulnerable regular
expression found in the wild, compared to previous work.
We are currently reporting these vulnerabilities, and 6 CVE
numbers have been assigned at the time of writing.

In summary, our paper makes the following contributions:

* We advance the state-of-the-art in ReDoS detection by
presenting REGULATOR, a novel dynamic analysis sys-
tem that leverages fuzzing and domain-specific muta-
tions to detect vulnerable regular expressions.

* We implement REGULATOR against JavaScript’s default
engine (IRREGEXP), the most used engine in the web-
ecosystem where ReDoS represents a real threat to the
availability of online services.

* We evaluate REGULATOR on three different datasets
used in previous research, and a collection of regexps
used in popular JavaScript packages, totaling more than
60,000 regexps.

To foster more research in this field, we have released the
source code of REGULATOR along with any other research
artifacts at https://github.com/ucsb-seclab/regulator-dynamic.

2 Background

2.1 RegExp Syntax and Semantics

Classical regexps can be defined recursively with the follow-
ing rules:

E —c (character)
E —E\E, (sequence)
E —E\|Ey (disjunction)
E —E% (quantifier)
E —(E)) (capturing group)

Let X be a finite alphabet of symbols. We say that L(E) C L*
is the language of the regexp E, which represents the set of
strings that are recognized by E. Then, we have: L(c) = {c},
L(ElEz) = {xy|x S L(El),y S L(Ez)}, L(El |E2) = L(El) U
L(E»), and L(E %) = L(E))*. The capturing group opera-
tor (E) matches the same language as E1, and instructs the
matching system to record the exact substring matched by the
expression E|.

Most modern regexp engines are extended with additional
constructs that go beyond the classical definition of regular
expressions. In particular, non-capturing groups, unlike their

https://github.com/ucsb-seclab/regulator-dynamic

(a) NFA for the language {ab,ac}

H
g 000

(b) NFA for the regexp (a*)a(a*)b

a
Go

(c) NFA for the regexp (ala*) *

Figure 1: Automatons accepting various regular languages.

capturing counterparts above, are denoted (?:E_1), and in-
struct the regexp engine to not record the substring matched by
that group. Backreferences, denoted \n, assert that whichever
substring was matched by the n™ capturing group must appear
again at that location. Forward assertions (?=E_1) require
that the string that immediately follows must match E_1 — but
it does not “consume” the string. Likewise, backward asser-
tions (?<=E_1) require that the string immediately preceding
must match E;. Both forward and backward assertions have
a negative variant — (?!E_1) and (?<!E_1), respectively —
which requires that the following string (or preceding string,
respectively) must not match E|. The word-boundary asser-
tion \b requires that the matched position in the string is
either the start of the string, the end of the string, or between a
“word” and “non-word” symbol. Lastly, the * symbol matches
the start of a string, and the $ symbol matches its end.

An important implication of the aforementioned extensions
is that L(E) is not necessarily a regular language: for exam-
ple, the regexp (a*)b\1 accepts the language a"ba”, for all
n € N — which is a context-free language [53]. Moreover,
modern extensions of regular expressions further broaden
the class of accepted languages. For instance, the regexp
(a*)b\1b\1 accepts the language a"ba"ba”", which is a mem-
ber of context-sensitive languages. This significantly com-
plicates ReDoS detection: non-regular languages cannot be
represented by a finite automaton [53]. Therefore, NFA-based
analyses — such as those presented by Weideman [64] and
Wiistholz [65] — are unable to process these features. Ad-
ditionally, string matching in regexps with backreferences
is known to be NP-complete [14], and detecting ambiguity
of context-free languages is known to be undecidable [34].
As a result, static analyses must take great care to avoid (or
minimize) the impact of these sub-problems on their results.

For this reason, through the rest of this paper, we use the
term “regexp” rather than “regular expression” when referring
to the full set of expressions supported by modern engines,
extensions included, to avoid any ambiguity of terms.

2.2 Backtracking Regexp Engines

In formal language theory, a regular expression without lan-
guage extensions describes a regular language, and it is
known to always have some finite automaton that recog-
nizes this regular expression’s language [53]. Spencer’s Algo-

rithm [54] and Thompson’s Algorithm [59] are two common
approaches to implementing a generalized matching system
for regular expressions. Broadly, they correspond to a con-
strained depth-first search and a breadth-first search through
the state-space of a non-deterministic finite automaton (NFA),
respectively [29]. An NFA is a 5-tuple (Q,X,9, o, F') where
Q is the set of states, X is the set of input symbols (alphabet),
§: 0 xXU{e} — P(Q) is the transition function, g is the
initial state, and F' C Q is the set of accepting states [53].
The alphabet is augmented with €, a symbol indicating a non-
deterministic transition consuming no characters.

Spencer-style regular expression matchers are commonly
called “backtracking” because the depth-first traversal back-
tracks upon reaching a no-match condition. To illustrate this
behavior, consider the automaton illustrated in Figure 1a,
which accepts the language {ab,ac}. When given the string
ac as input, a depth-first traversal of the automaton may have
the following preorder trace: D), @), B), @, 3, . This trace
shows how the automaton first attempts to match ab. When it
reaches node 3), no out-transitions are possible (the c in the
input does not match the label b on the edge from 3) to),
and the automaton has to backtrack to node ().

2.3 ReDoS Attacks

The core idea behind ReDoS attacks is that certain NFAs ex-
hibit catastrophic backtracking under a Spencer-style engine’s
depth-first traversal.

For example, the NFA illustrated in Figure 1b corresponds
to the regular expression (a*)a(a*)b. In order to reject
strings of the form a”c, the engine must traverse O(n”) paths.
A depth-first traversal at state (1) makes one of two choices
upon reading the i symbol a: either transition to (2), which
requires O(n — i) time to reject the match, or self-loop, which
presents the same decision recursively for consuming the
(i+ l)th symbol a. As there are n characters a, a simple re-
currence relation demonstrates that this requires O(n?) time
to reject. Higher degree polynomial worst-case matching is
possible by repeating the pattern [64, 65].

Exponential worst-case complexity is also possible. For
example, the NFA illustrated in Figure lc corresponds to
the regular expression (a|a*) *. In order to reject strings of
the form a"b, the engine must traverse O(2") possible paths

through the NFA before rejecting the match — as there are n
binary choices of state to traverse by consuming a at state (3).

2.4 Current ReDoS Detectors

Several state-of-the-art ReDoS static analysis systems base
their work upon an NFA representation of the regexp [41,
52,64, 65]. In their publication, Wiistholz et al. [65] provide
a practical algorithm for ReDoS detection in an NFA. Wei-
deman et al. [64] and Liu et al. [41] build upon this with
some modification. Below, we provide a brief overview of the
patterns within an NFA that indicate potential for ReDoS.

Polynomial, O(n?) worst-case. This detection scheme iden-
tifies “loop-branch-loop” structures. This occurs when three
paths Py, P», P3 € Q" exist such that all paths accept the same
string w and, (1) P; must start and end at some state u, (2) P»
must start and end at some state v, and (3) P3 begins at u and
ends at v. In Figure 1b, this is demonstrated by states (1) and
(), where the paths Py, P>, P3 all accept the string w = a.

Exponential, O(2") worst-case. The detection scheme at-
tempts to identify “loop-within-loop” structures within the
NFA, where the inner and outer loop begin and end in the
same state, and both are satisfied by the same string w. In
Figure 1c, states 3) and (1) exhibit this behavior: the loop
(®-(D-(B) accepts the string a, as does the loop B)-3).

Wiistholz et al. [65] and Liu et al. [41] detect vulnerable
structures by depth-first search from the states within Q. Wei-
deman et al. [64] leverage the algorithm described by Mohri
et al. [10] which performs somewhat faster at the expense
of O(poly(|Q|)) memory usage. The output of these systems
are an attack prefix, pump string, and attack suffix. The prefix
is a string which matches a path from the initial state gg to
the vulnerable component. The pump string is the string w
described above, which an attacker repeats to increase the
matching time. The suffix string is one which ensures that the
sub-match rejects, which forces the engine to backtrack.

Rathnayake et al. [48] take a slightly different approach.
Their tool evaluates a derivation tree created from the regexp,
and search for recursive branching behavior. However, this
only identifies O(2") vulnerabilities. Finally, Shen et al. [52]
dynamically explore an extended NFA (e-NFA), which sup-
ports extended regexp features — however, this method also
only identifies O(2") vulnerabilities.

3 REGULATOR: A Dynamic Analysis System

REGULATOR is a dynamic analysis system with three core
components: a feedback-driven generational fuzzer (Sec-
tion 3.1), a slowdown-pumper (Section 3.2), and a dynamic
validator (Section 3.3). Given a particular regexp pattern,
REGULATOR is able to detect whether the regexp is vulnera-

ble to ReDoS, and to automatically infer a pump formula for
generating strings that exhibit super-linear running time.

At a high level, each of the three components performs one
task. First of all, the generational fuzzer finds a pathologically
slow witness string within a fixed budget of n input characters.
The witness is then passed to the slowdown-pumper, which
infers the pump formula. Finally, the dynamic validator ver-
ifies that the pump formula can produce strings that indeed
trigger a sufficiently slow execution of the matcher.

3.1 Feedback-Driven Generational Fuzzer

Fuzz testing, or fuzzing, is the process of exploring a program’s
behavior by repeated execution with varying inputs [43].
Many modern fuzzers are also feedback-driven: the fuzzing
system uses measurements taken from an input’s execution to
guide the selection of the next inputs [2,33,39,47,66]. These
systems are typically also generational: inputs favored by a
heuristic are chosen as parents, and mutated to form the set
of inputs in the next generation.

The goal of common bug-finding fuzzers is to discover
an input that causes the program to perform an undesirable
behavior (i.e., a crash or hang). Program coverage is a natural
guiding heuristic for discovering these inputs, and it is used
by many fuzzers, including the popular tools AFL [66] and
libFuzzer [2].

Prior research shows several effective heuristic techniques
for identifying particularly slow inputs to a general program.
For example, SlowFuzz [47] uses execution path-length as a
simple heuristic to guide the generational reproduction. Perf-
Fuzz improves on this strategy by employing a hybrid heuris-
tic based on coverage and path-length [39]. We adopt the latter
for our purposes in REGULATOR with a fairly straightforward
reapplication of the concepts.

Instrumentation. Essential to Spencer’s original regexp
matching algorithm is an intermediate representation that
describes a step-by-step matching procedure [54]. As ob-
served by Davis et al. [27], this is primarily an engineering
decision above all else, which simplifies the system’s con-
struction. This design persists in modern regexp matchers —
including Python, Ruby, JavaScript, and Perl — where regular
expressions are compiled in the form of a custom bytecode,
and the matcher operates by executing this bytecode within
a lightweight interpreter, using the subject string as input.
While in hindsight the intuition of instrumenting the bytecode
is straightforward, it represents a fundamental reframing of
this problem, and, to the best of our knowledge, we are the
first to propose and implement such an approach.

Although the actual implementation of this concept differs
across engines, several key design features are shared between
different engines. REGULATOR takes advantage of this design
by instrumenting the engine’s interpreter directly: the match-
ing engine is not treated as a black-box component, but rather

instrumented — with a focus on detecting ReDoS. For in-
stance, where normal fuzzers would measure the coverage of
the interpreter’s code, our tool directly collects the coverage
of the bytecode to quickly converge towards a pathologically
slow input.

The instrumentation accumulates information within an
execution profile (1) by leveraging the handling procedures
of the following two instruction kinds: character reads and
branches. Character reads are instructions that load a single
character from the subject string into an interpreter’s register.
Our system keeps a running record within profile © of the
last read character index, and it uses this information when
handling branch instructions. On the other hand, branch in-
structions resemble the classical definition of control-flow
related constructs: they have two possible successor instruc-
tions, and they are guarded by a binary conditional statement.
When a branching instruction is executed, REGULATOR in-
crements the total number of times the taken branch has been
traversed, and also records in the profile 7 the index of the last
character read. Both data points are crucial for REGULATOR’s
effectiveness, because (1) they measure coverage and (2) they
can be used by the mutation procedure to drive the fuzzer to-
wards unexplored paths. Finally, at branching points, we also
update a running hash (PATHHASH(n]) that summarizes the
path followed by a subject string into the bytecode program.
This hash is used in a later stage of REGULATOR to quickly
discard samples that do not exhibit novel behavior.

Algorithm 1: Fuzzer Main Loop

Input: seeds S
1 C+[(S;,RUN(S;)) | S;i€S]
2 while deadline do
3 W < GENCHILDREN(C)
for w,w' € W do
7 < RUN(W)
C + MERGE(C,w,w)
return MAXCOSTENTRY(C)

4
5
6
7

Main Fuzzing Loop. REGULATOR’s main fuzzing loop is
described in Algorithm 1. The fuzzing process starts by col-
lecting an initial execution profile 7 for each input seed S; € S
(Line 1), and then enters the main generational loop, which
runs until a predetermined deadline (Lines 3 - 6). Once the
deadline passes, the main fuzzing loop is terminated and REG-
ULATOR searches the corpus for the maximum cost entry
(Line 7), defined as the entry with the highest number of
executed bytecode instructions. This entry represents our wit-
ness string, which is used by the slowdown-pumper in the
following phase.

The key components of our fuzzer are the procedures that
generate new mutated children and that select the most promis-
ing ones. In a nutshell, for each generation within the main
loop, our system creates a set W of mutant strings w’ paired

with the parent string w (Line 3), and collects an execution
profile ® for each mutant in turn (Line 5). The procedure
MERGE is then invoked (Line 6), which consults the exe-
cution profile 7 to determine whether mutant w’ should be
discarded or included into the corpus C.

The procedures GENCHILDREN and MERGE guide the
heuristic exploration of the regexp program’s behavior, and
are essential to the efficient operation of REGULATOR.

Algorithm 2: GENCHILDREN
Input: corpus C : P(X* x IT)
1 selections < []
2 for e € BRANCHING EDGES do
3 rep < select representative maximizing e in C
4 append rep to selections
s for (w,m) € C do
6 if w ¢ selections and STALENESS[w] < RAND()
7
8
9

append w to selections
ret < []
for w € selections do
10 fori €0...NumChildren do
11 w' < MUTATE(w)
12 append (w,w') to ret
13 return ret

Children Generation. The routine responsible for generating
new mutated children — GENCHILDREN — is described in
Algorithm 2. This procedure starts by identifying promising
corpus members. To this end, we iterate over all the recorded
branching edges and select a maximizing representative for
each edge e (Lines 2-4). We say that a given corpus member
(w,m) € C is maximizing for e if there does not exist any
distinct corpus member (w',7') such that profile ' indicates
edge e was traversed more than in 7. In the case that multiple
distinct corpus entries are maximizing for edge e, we select a
single representative uniformly at random.

Corpus entries which were not selected as a representa-
tive are then considered for inclusion based on the staleness
score [39] of the input string w (Lines 5-7). Staleness is a
heuristic that begins low for each entry in the corpus, and
increases whenever a mutant offspring of string w fails to
produce novel behavior (see Algorithm 3, Lines 4 & 6). This
metric is used to discourage the selection of parents that have
no record of successful reproduction, while allowing limited
exploration of inputs that are not currently maximizing.

We then produce NumChildren mutants for each selected
parent (Lines 8-13). For a given parent input string w and pro-
file T, REGULATOR chooses among the following mutations:

* rotation: The parent input is rotated either one character
left or one character right.

* crossover: A co-parent is chosen at random from corpus
C. Indices i and j are chosen at random such that 0 <i <

Jj < n. The child inherits all characters from w, except
characters i through j, which are inherited from the co-
parent.

e substring replication: A random substring W is selected
from w, and replicated elsewhere in the string w.

e arithmetic: A character index is selected at random and
a small value is added (or subtracted) to the character’s
codepoint value.

Moreover, REGULATOR implements a domain-specific mu-
tation strategy, called suggestion, based on the information
recorded at branching sites. This mutation selects a random
branching edge e (traversed in 7) that originates at a character-
based branching instruction. If the string-index of the charac-
ter under comparison is known, it replaces the character with
one that negates the branching condition. The rationale behind
this mutation is to create mutants that will explore different
paths and, therefore, increase coverage. For example, the reg-
exp abcd (x| \w) *y is vulnerable to ReDoS, but attack-strings
must start with abcd in order to reach the vulnerable compo-
nent. Without the mutation suggestion, a purely random-based
mutation strategy would take significantly more time to derive
the long prefix strings required to explore deeper program
states.

Each child input w’ is derived by applying a single mutation
to the parent string w. This differs from previous research in
this domain, which applies a random number of mutations.
We find that our strategy significantly increases the likelihood
of discovering novel behavior.

(Line 1). We then include the child only if it is maximal for
some edge e (Lines 2-5). The combination of these heuris-
tics ensures both that the corpus evolves toward both novel
coverage (when the edge e is first traversed) and that the cor-
pus advances toward slower executions within a component
(when edge e is traversed a new maximum number of times).

3.2 Slowdown-Pumper

Prior research into ReDoS makes the observation that attack-
strings that trigger worst-case execution time take the form
abic, for strings a,b,c and i > 0 [38,48,52,65]. We call a
the attack prefix, b the pump string, and c the attack suffix.
Together, we call this a pump formula. Attackers may increase
the time required to match a string by repeating the pump
string b until a sufficient amount of slow-down is achieved.
Fuzzing reveals a slow string within a budget of n charac-
ters (the witness string) — but this single data-point is not
sufficient for determining whether the worst-case regexp per-
formance is super-linear in n. However, we observe that, with
very high likelihood, the pump string exists somewhere within
the witness string. For example, the regexp abc (123]\d) *x
is vulnerable to the prefix abc, pump string 123, and suffix a.
After fuzzing for only 2 seconds with n = 13, REGULATOR
discovers the witness string abc123123123a — which clearly
contains the pump string. In what follows, we take inspiration
from Shen et al. [52] and use a simple yet effective strategy to
identify the pump string by a heuristic scan over the witness.

Algorithm 4: GENPUMPFORMULA

Algorithm 3: MERGE

Input: corpus C : P(X* x IT),

parent w : X*, child w', profile 7'

1 if PATHHASH(T) is unique
2 for i € BRANCHING EDGES do
3 if T is maximal for component i in C
4 reset STALENESS[w]
5 return CU{(w/, ')}
6 increase STALENESS[w]
7 return C

Child Merging. The routine responsible for selectively in-
cluding mutant children in the corpus C is MERGE, described
in Algorithm 3. The algorithm accepts as input the current cor-
pus C, a parent string w, the mutant child w’, and the child’s
execution profile ', collected by the main fuzzing loop (Al-
gorithm [, Line 5). We begin by quickly exiting from the
procedure if PATHHASH(T') is not unique within C — in-
dicating that this execution did not contain novel behavior!

IThis is uniquely useful in regexp programs, which have relatively small
program length compared to general-purpose programs used in typical
fuzzers.

Input: witness w : ©*
1 candidates <« ||
2 slowest_per_char <— —oo
3forlenel...ndo
4 for pos €0...(n—len) do
5 prefix < w[0 : pos]
6 pump < w[pos : pos + len]
7 suffix <— w[pos +len : n]
8 attack < prefix + pump™PUMPS suffix
9 t + TIME(attack)

10 if # / len> slowest_per_char

11 slowest_per_char < ¢ /len

12 ¢ + MODELFIT(w, pos,len)

13 append (pos, len, ¢) to candidates

14 return (pos, len, 0) for steepest ¢ in candidates

The routine is described in Algorithm 4. We begin by iter-
ating over every substring of the witness w in order of increas-
ing length (Lines 3-4). We then extract a prefix (all characters
prior to the substring), pump string (the substring considered),
and suffix (all characters after the substring), and construct a
candidate atfack string by repeating the pump string a large
number of times (Lines 5-8). We then run the regexp matching

procedure against the attack string, and measure the number
of bytecode instructions executed during matching (Line 9).
We use the heuristic “instructions added per pump charac-
ter” to quickly discard pump-string candidates that do not
cause a larger slow-down than any prior candidate (Line 10).
Finally, we perform a model fitting procedure to estimate
the growth function of instructions executed as the string is
pumped (Line 12). The model fitting procedure works by
regression. We take measurements of the matching time for
attack strings formed by repeating the pump string from 10
to 256 times, increasing by 13 each iteration, for a total of 20
measurements. We then fit the data against three models: (1)
linear: 7 = o + P, (2) power: 7 = onP, and (3) exponential:
7 = aeP". We ignore the power regression when B ~ 1, as this
is likely better explained as a linear growth model. We select
¢ to be the model with the highest 72 coefficient.

The procedure completes by selecting the pump substring
with the steepest growth model (Line 14). Preference is given
first to exponential models, and second to power models. In
both cases, ties are broken by the highest value B.

3.3 Dynamic Validator

The final stage of REGULATOR is a dynamic validator. We
adopt a simple metric used in prior research: we say that a
regexp is vulnerable to ReDoS if an attack string of less than
1 million characters can cause 10 seconds or more time spent
in the matching system [28, 29]. We verify that an attack
string derived from the pump formula meets this criteria.
Furthermore, if enabled by configuration, we use a binary-
search between the length of the witness string length n and
the length of the attack string to find the smallest string that
results in at least 10 seconds of matching time.

4 Implementation

In this work, we stray from the tradition of polyglot ReDoS
detection and instead exclusively focus on regexps as imple-
mented by a specific matching engine. In particular, we focus
on IRREGEXP, a popular drop-in library for compiling and
evaluating regular expressions. This matching engine is cur-
rently used by Mozilla’s Firefox web browser [37] and the
V8 JavaScript runtime [26], which sits behind both Google’s
Chrome web browser and the NodeJS language runtime.

NodeJS and ReDoS. NodelS is a server-side JavaScript run-
time with a single-threaded, event-driven design. The runtime
processes work by selecting events one at a time from an event
queue. Once an event is selected, its event handler function is
invoked with exclusive, non-preemptible execution. Several
researchers have observed that these single-threaded, event-
driven languages suffer from a class of Denial-of-Service
attacks known as Event Handler Poisoning (EHP) [30, 45].
EHP occurs when an attacker is able to cause significant delay

Instruction Args. Description

PushBt addr Push code address addr onto the
stack

PopBt - Pop an address from the stack
and jump to that address

PushCp - Push the value of cp onto the
stack

PopCp - Pop a value from the stack and
store it in cp

Fail - Halt and reject the string

Succeed - Halt and accept the string

GoTo addr Jump to address addr

LoadCurrent 1i,addr Set register lc to the character

Char atcp + 1i.Jump to addr if that
index is out of range.

CheckChar c,addr Jumptoaddrifc = lc
AdvanceCP i Set register cpto cp + i
Advance ri, i Set register ri tori + i
Register

Set register ri to v

Set register cp to cp + 1 until
the character at cp + j equals c.
Go to addr if cp + i is out of
range.

SetRegister ri,v
SkipUntil c, 1,
Char j, addr

Table 1: Selected instructions of the IRREGEXP interpreter

in the event handler’s execution thread, which prevents any
further events from being processed until the victim thread
yields. In this scenario, ReDoS is a particularly problem-
atic type of event handler poisoning, as there does not exist
any method of preempting a thread from the regexp match-
ing subsystem — effectively halting all progress until the
match procedure completes, and immediately reducing server
throughput to zero. To address this serious concern, we will
focus on the implementation of REGULATOR for the IRREG-
EXP matching engine. However, our methodology remains
general and applicable to other backtracking engines with
sufficient similarity.

Irregexp Internals. IRREGEXP is a Spencer-style backtrack-
ing regexp matching engine [26,29] that works in two phases.
In the first one, the user invokes the IRREGEXP compiler with
a regexp as input (the pattern). The compiler emits a regexp
program — i.e., a code simulating a depth-first exploration of
the regexp state space. These programs can be either bytecode,
which is executed by the IRREGEXP interpreter, or platform-
native code. The semantics of these programs are completely
equivalent and, for simplicity, we chose to analyze the byte-
code regexp programs. In the second phase, the user passes
an input (subject) character string, and IRREGEXP executes
the regexp program with the subject as an input. If the regexp
program halts at a Succeed instruction, then the system re-
ports a match; otherwise, the regexp program halts at a Fail

instruction, and the system reports a non-match. All regexp
programs are halting, by design of the IRREGEXP compiler.

The IRREGEXP interpreter’s memory model is an expand-
able stack of 32-bit integers, a finite set {r0,...,rn} of
general-purpose 32-bit registers (where n is determined at
compilation), a 32-bit character index register cp, and a loaded
character register 1c. The interpreter does not allow arbitrary
stack reads — only the topmost 32-bit integer may be exam-
ined.

The IRREGEXP interpreter supports 59 instructions, some
of which are summarized in Table 1. In general, the instruc-
tions fall into one of four categories: stack manipulation, con-
ditional branching, register manipulation, and fused loops.
An example of the latter category is SkipUntilChar, which
advances the current position in the string (cp) until some
character is seen at a given offset. This instruction, in com-
bination with others, is used to implement the Boyer-Moore
fast string search algorithm [17].

We provide a simplified disassembly of the regexp pro-
gram for “ab*$ in Listing 1. Instructions 0x1c-0x24 set up a
stack frame: PushBt places a return address on the stack, and
PushCp stores the character index register cp on the stack,
so it can be restored after returning from the procedure call.
Instructions 0x3c-0x40 are, likewise, similar to a function
return. When executed, after consuming the character a, char-
acter b is repeatedly consumed by the recursive procedure at
instructions 0x2c-0x54. If any character other than b is read,
then the program begins a cascading return (PopBt) until it
reaches Fail and exits. Otherwise, the program will even-
tually reach the end of the string at instruction 0x2c, which
branches to Succeed and exits.

Listing 1: Disassembly of “ab*$

0x0 PushBt addr: 0x60

0x8 LoadCurrentChar i: 0 addr: 0x18
0x10 CheckChar c: ’'a’ addr: Oxic
0x18 PopBt

0x1c PushCp

0x20 AdvanceCp it 1

0x24 PushBt addr: 0x18

0x2c¢ LoadCurrentChar i: 0 addr: 0x5c
0x34 CheckChar c: b’ addr: 0x44
0x3c PopCp

0x40 PopBt

0x44 PushCp

0x48 AdvanceCp it 1

0Ox4c PushBt addr: 0x3c

0x54 GoTo addr: 0x2c

0x5c Succeed

0x60 Fail

Instrumentation. A important design feature of REGULA-
TOR is that it requires minimal instrumentation of the target
engine. Similar to other regexp engines, the central compo-
nent of IRREGEXP’s interpreter is a switch-case dispatcher
that invokes instruction handlers. For each instruction, we

2This makes the IRREGEXP interpreter not Turing-powerful.

Name Source Ref. Size Description
Corpus [19] 13,597 OSS Python projects [20]
base RegExLib [49] 2,990 Online regexps website
Snort [50] 10,037 Rules used in the Snort IDS

npm Node Registry [32] 42,743 Popular JavaScript packages

Table 2: Datasets used in our evaluation.

added a call to the function responsible for updating the ex-
ecution profile 7. To instrument branching instructions, we
also retrieve the target address, either from an argument or
from the top of stack. Character reads are handled similarly,
since they also accept an offset from the current character
index cp as an argument.

In total REGULATOR’s fuzzer required only 3,000 lines
of C++ code, 200 of which are for instrumentation, and the
remainder implement the fuzzer’s control procedures.

5 Evaluation

In this section, we evaluate how REGULATOR performs on a
diverse set of regexps. In particular, we set out to answer the
following research questions:

* RQ1: Does the overall architecture of REGULATOR help
to quickly explore the state-space of regular expressions
(when they execute as programs on top of the matching
engine)?

* RQ2: Is REGULATOR effective in finding ReDoS vul-
nerabilities, and does it do so better than previous work?

* RQ3: Does REGULATOR discover previously unknown
ReDoS vulnerabilities in real-world packages?

Dataset. As summarized in Table 2, we select two differ-
ent datasets to perform our evaluation. The first dataset con-
tains regexps from three different sources, which we chose
because of their extensive use in previous ReDoS research
(base dataset). The second dataset contains regular expres-
sions extracted from real-world JavaScript packages (npm
dataset). To collect the npm dataset, we downloaded the top
10,000 most popular packages from the NPM package reg-
istry, as measured by monthly downloads. JavaScript allows
users to express regular expressions in two forms. The first
one is by a language literal, i.e., /pattern/flags. To find
such regular expressions, we use a traversal of each source
file’s abstract syntax tree (AST) and extract both the pattern
and, if present, any modifier flags (such as i to enable case-
insensitive match). This method produced 40,877 distinct
regexps. Moreover, users may also invoke the constructor
RegExp (pattern, flags) to create a regexp at runtime. To
handle these cases, we use the code analysis engine Cod-
eQL to perform a data-flow analysis on the package’s source

code [4]. We record all known strings that are used to con-
struct a regular expression in this manner. This analysis pro-
duced an additional 2,019 distinct regexps.

Test Environment. All experiments were performed on an
Intel Xeon Gold 6252 CPU, with 377 GB total RAM, running
Ubuntu 20.04. Each tool was assigned a unique CPU core
with taskset to avoid interference in results.

5.1 Does REGULATOR quickly explore pro-
gram state-space?

Berglund et al. [14] recently published a proof showing
that string matching in regexps with backreferences is NP-
complete. Furthermore, deciding whether any string is ac-
cepted by a regexp with backreferences is also in NP [14].
For this reason, we will use program coverage as a tractable
vehicle to evaluate exploration of the program state-space.
We run REGULATOR’s fuzzer for five minutes on all 69,367
regular expressions. During these executions, we regularly
sample the total coverage of the regexp program, as measured
by percentage of instructions executed at least once during the
fuzzing session. In order to explore how the size of the regexp
program impacts the attained coverage, we categorize each
regexp into either small, medium, or large, depending on the
number of instructions in the regexp program. We create each
category to contain exactly !5 of the dataset. The category
instructions bounds are provided in the following table:

Small Medium Large
0-51 52-101 102-66,676

Quite interestingly, two-thirds of the regexps used in the wild
compile to programs with less than 101 instructions, and 95%
of them contain less than 435 instructions. The median cov-
erage of our fuzzer, over time, is displayed in Figure 2. This
experiment shows that, even among large-sized regexp pro-
grams, our fuzzer rapidly achieves over 80% coverage within
10 seconds. Moreover, all categories reach more than 90%
median coverage within the five minute time bound. While in-
vestigating the results of our fuzzer, we quickly realized that
some regexps produce programs that include unreachable
code. For instance, every regexp program includes by default
some code to support “sticky” mode (flag ‘s’) that, when en-
abled, allows the user to resume the regexp interpreter after it
exits with a successful match. The code to support this feature
is present even when sticky mode is disabled, and it is entirely
unreachable. Another example is regexps that contain a dis-
junction, where the first element matches all strings which
are matched by the second (for example, \d| 1). In this case,
the instructions to match the second element will be emitted,
but never executed. In other words, the results presented in
this section represents a lower bound on REGULATOR’’s per-
formance. To summarize, the previous results clearly show

O
(=}
L

x®
[=}
L

Median coverage (%)
~l
(=)

601
---- Small
50 4
—-— Medium
....... Large
40 , .
10° 10" 10°

Seconds elapsed

Figure 2: Median coverage of REGULATOR-fuzzer over time,
separated by size of regexp program as determined by instruc-
tion count.

that we can answer RQ1 in the affirmative: REGULATOR’s
heuristics are effective in exploring the program state-space.

5.2 Comparison with NFA-based approaches

To compare REGULATOR with NFA-based approaches, we
selected five popular tools that detect ReDoS using NFA-
based analysis: RXXR2 [48], Rexploiter [65], NFAA [64],
ReScue [52] and Revealer [41].

In order to make a sensible comparison, we must first intro-
duce the concept of full-match and partial-match semantics.
A regexp engine performs full-match semantics if the entire
string must satisfy the regexp pattern in order to accept the
input string. On the other hand, matchers using partial-match
semantics will accept a string if any substring of the input
satisfies the regexp pattern. For example, the regular expres-
sion c.r would match car but not carpet using full-match
semantics, but partial-match semantics would match in both
cases.

As noted by Davis et al. [29], all the systems we use in
our evaluation assume full-match semantics. However, this is
not always appropriate: for example, Python’s regexp library
allows the user to select either full-match or partial-match se-
mantics (i.e., by using the methods match or search), while
JavaScript’s matcher offers only partial-match semantics. This
difference has profound implications in terms of backtrack-
ing complexity, since the matching semantics does impact
running-time performance. For instance, the regexp a*b ex-
hibits O(n) worst-case running time when using full-match
semantics, but O(n?) worst-case running time when using
partial-match semantics.

In order to level the field and to run a meaningful compari-
son across tools, we conform REGULATOR with the majority

Tool Corpus RegExLib Snort Total

Sup. TP FP FN Sup. TP FP FN Sup. TP FP FN Sup. TP FP FN
RXXR2 11,696 30 26 2,154 2,301 100 27 451 7,102 10 5 2,200 21,099 140 58 4,805
Rexploiter 10,536 293 973 1,891 1,764 98 287 453 5,795 53 1,035 2,157 18,095 444 2295 4,501
NFAA 11,256 738 952 1,446 1,977 279 70 272 6,169 831 154 1,379 19,402 1,848 1,176 3,097
ReScue 12,441 26 4 2,158 2,780 115 14 436 7,765 8 0 2,202 22,986 149 18 4,796
Revealer 13,206 428 30 1,756 2,946 245 17 306 10,035 232 4 1978 26,187 905 51 4,040
REGULATOR 13,595 2,156 0 28 2,973 519 0 32 10,037 2,172 0 39 26,605 4,847 0 99

Table 3: ReDoS detection results for the base dataset.

of existing tools. That is, we evaluate the base dataset using
full-match semantics. Since JavaScript only offers a partial-
match method, we anchor each regular expression with the
caret * and dollar $ signs (e.g., * (\d+1\d+2)$) 3. We believe
this experiment design provides a useful comparison between
the tools.

5.2.1 Base Dataset

We run RXXR2, Rexploiter, NFAA, ReScue, and Revealer
on each regexp in the base dataset. We allow each tool up to
10 minutes and 16 GB of memory to analyze each regexp —
both limits are far more generous than what has been used
in previous research [28,29] — and we record the pump
formula reported by each tool. REGULATOR is also allowed
the same amount of time to run: we divide the time evenly
among fuzzing and slowdown-pumping, and we set aside 10s
for the dynamic validation phase. We configure the fuzzer to
find witness strings at a fixed length of 200 characters, starting
from a seed containing only the character a.

Each pump formula reported by the aforementioned tools
is then validated to determine whether it is a true positive or
false positive result. Since there is no general consensus about
what constitutes a true or false positive, we decided to use
the heuristic employed by most prior work, which states that
a result is a true positive if the pump formula produces 10
seconds of delay within a budget of 1 million characters [28,
29]. If we fail to produce 10 seconds of delay, we label the
result as a false positive. Identifying false negatives involves
slightly more nuance. Our datasets are not labeled, so we must
resort to the following strategy: Given a regexp, we say that
any tool reports a false negative whenever it does not report
a ReDoS vulnerability, but at least one other tool reported
a true positive result for that regexp. In other words, since
we can unequivocally demonstrate that a regexp is actually
vulnerable, we build the set of true positives by combining
the vulnerabilities reported by at least one tool.

Table 3 summarizes the results for each dataset contained
in the base dataset. We can see that REGULATOR finds at

3We first recursively remove all anchors from within disjunctions. For
example, “a| (b$|c) becomes " (al (b|c))$.

least two to three times more true positives (vulnerable regu-
lar expressions) when compared to the state-of-the-art ReDoS
detection tools. Moreover, REGULATOR eliminates false posi-
tives by design, since pump formulas are dynamically tested
before any report is raised. REGULATOR’s dynamic validator
only rejected 114 (2.4%) pump formulas. Finally, our tool
demonstrates a false negative rate two orders of magnitude
lower than all other tools.

During this experiment we observed 3,059 timeouts from
ReScue, and 350 timeouts from NFAA. ReScue’s original
publication used a 10 minute timeout [52], and NFAA used
a 10 second timeout [64] — so we believe that our time
limit of 10 minutes is a fair comparison. For both tools, /3
of the timeouts occurred while analyzing known-vulnerable
regexps.

Selected Results. REGULATOR’s remarkable effectiveness
is illustrated by the following selected examples, which lists
several ReDoS detections that are unique to our tool:

smodule (\s*\ (.*\))2\s+("?) (.+)\2
(2:\b\w* (\w\w?)\1{2, }\w*\b)
dir\s*=\s*[\x22\x27]?a((2!"--).)*?2\x2e\x2e[\x2f\x5¢C]

In the first example, we demonstrate an effective handling
of backreferences. ReScue does handle backreferences, but
failed to find this vulnerability. Revealer and RXXR2 only
handle backreferences by approximation (by ignoring them),
and likewise did not identify this vulnerability. On the other
hand, the second example demonstrates a precise handling
of quantified backreferences. The structure \1{2, } is only
supported by ReScue, but their method cannot find this O(n?)
super-linear regexp. This highlights the power of REGULA-
TOR’s approach: no additional work beyond initial instrumen-
tation was required to support this syntax and semantics. Fi-
nally, the last example demonstrates awareness of flags passed
to the regexp matching system — in this case, the flags used
were ‘m’, ‘i’, and ‘s’. This example clearly shows how flags
should not be dismissed, since this pattern is only vulnerable
when the ‘m’ flag is set, indicating multi-line mode. Among
previous research, the only other tool that recognizes regexps
flags is Revealer, which did not identify this vulnerability.

Tool NPM

Sup. TP FP FN
RXXR2 35,842 120 88 5,969
Rexploiter 30,317 77 1,135 6,040
NFAA 32,158 813 1,411 5,280
ReScue 39,258 143 4 5946
Revealer 38,379 410 5 5,676
REGULATOR 41,342 5,954 0 132

Table 4: NPM ReDoS Detection Results

Once again this result is immediate from our approach: no
additional work was necessary to support these flags.

5.2.2 NPM Dataset

We conduct a similar comparison with the NPM dataset, by
running each tool with the same time and memory limits used
in the previous experiment. This time, however, we do not an-
chor the regexp — neither while testing the regexp nor while
evaluating the pump formula. This choice was made both
to demonstrate effectiveness with partial-match semantics,
but also to most closely mirror how the regexps are used in
their original setting (recall that NPM packages are written in
JavaScript, which uses partial matching semantics). As in the
last experiment, we verify that each pump formula is able to
achieve 10 seconds of delay within 1 million characters.

The results are displayed in Table 4. In this experiment, we
demonstrate a seven-fold increase in true positive detections
over the next-best analysis tool. REGULATOR was able to
identify several thousand additional true positives, and was
able to run against every syntactically valid regexp. REGU-
LATOR’s dynamic validator only rejected 16 (0.3%) of pump
formulas.

The surprising performance of REGULATOR is indirectly
confirmed by the findings reported by Davis et al. [28]. In
their paper, the authors tested RXXR2, NFAA, and Rexploiter,
against a dataset of 349,852 regular expressions, which was
extracted from more than 500,000 NPM packages. They were
able to classify and verify 3,589 regexps as having super-
linear worst-case run-time. On the other hand, our tool was
able to identify 5,954 super-linear regexps, even though we
analyzed a considerably smaller amount (10,000) of packages,
and a significantly smaller number of regexps.

Selected Results. The following list of regexps show some
examples of novel detections by REGULATOR on the NPM
dataset:

<<=2(\w+\b) [\s\S]*2"[\t]*\1
Lrrst$ |
/\[I|l:|+‘|:7"]+$

NN Perffuzz [EEEE Tie [EZZ Regulator
VA
7000 1 7 7 % 7
6000 1
5000 1
£ 4000
@]
3000 1
2000 1
1000 A
60.0 120.0 180.0 240.0 300.0

Seconds fuzzed

Figure 3: Count of regexps for which each fuzzer has the
maximum path input over time, known vulnerable regexps
only. Ties are &= 100 instructions.

The first regexp, which was combined with the multi-line
flag (‘m’), demonstrates REGULATOR’s intrinsic deep knowl-
edge of the underlying matching system: when this flag is set,
the start-of-string character * changes meaning, and instead
matches the empty string preceded by a newline character,
\n. The second example highlights instead the importance of
analyzing the correct semantics — this regexp was consid-
ered safe by all other tools, but, in fact, it exhibits super-linear
behavior when run in partial-match semantics. Finally, the
last example takes the aforementioned features one step fur-
ther, and demonstrates that the start (*) and end ($) anchors
can appear combined within a disjunction (|). Once again,
REGULATOR was the only tool to successfully handle such
complex matching semantics.

5.3 Comparison with PerfFuzz

In this section, we examine whether REGULATOR pro-
duces better results when compared with existing slow-down
fuzzers. For this comparison, we select PerfFuzz, a state-of-
the-art general-purpose program fuzzer for finding patholog-
ically slow inputs [39]. We compile and instrument a stand-
alone executable version of IRREGEXP using the PerfFuzz
tooling. To run a fair and meaningful comparison, we repro-
duce the same setting used by our fuzzer: the regexp program
is compiled outside of the fuzzing loop, and the executable
loads the regexp program before running the matching pro-
cedure. Both fuzzers are given five minutes for each regexp,
and both are configured to produce inputs no larger than 200
characters. We record the subject strings covering the highest
number of instructions as they are discovered by each fuzzer.
We run this evaluation against the base dataset.

Figure 3 shows, as the time progresses, whether REGU-
LATOR or PerfFuzz found the input that causes the highest
number of instructions to execute. From this figure, we can

300000 1
--e-- PerfFuzz wins e -+
< -+4-- Regulator wins T
i 250000 e
£.200000 1 A
& 7
£ e
E=] J Pid
é 150000 +
3
& 100000 {
|
ob
Z 50000
P PR PSR PO .
0 T T T T -
50 100 150 200 250 300

Seconds fuzzed

Figure 4: Average difference in maximum path-length dis-
covered over time, separated by fuzzer with the slowest input,
known vulnerable regexps only.

clearly see that REGULATOR finds the slowest input string
for nearly all regexps, at most time-points. More interestingly,
Figure 4 shows the average difference in program path-length,
on a per-regexp basis, that each fuzzer discovers. This re-
sult highlights how the longest paths found by REGULATOR
are significantly slower than the paths found by PerfFuzz —
whereas, when PerfFuzz finds the longer path, it is only longer
by a small margin.

This success is because REGULATOR’s interpreter-level
coverage feedback and domain-specific mutations create an
effective regexp program exploration. For example, the sug-
gestion mutation is informed by previous executions of the
regexp, which helps uncover components that can only be
executed by correctly guessing a series of characters.

We then take the slowest input discovered by PerfFuzz
and feed it to our slowdown-pumper subsystem to derive a
pump formula, with a 5 minute time limit per regexp. This
resulted in 4,224 pump formulas with verified 10 second
delay, compared with 8,713 from REGULATOR". PerfFuzz
only discovered 42 vulnerable regexps which REGULATOR
failed to identify, which we discuss below.

The success in generating pump-formulas demonstrates
that REGULATOR’s witness string is not only much slower,
but is also much more likely to exercise ReDoS-vulnerable
behavior, which is automatically identified and generalized to
a formula by the slowdown-pumper.

We now conclusively answer RQ?2 in the affirmative: REG-
ULATOR is significantly more effective at finding ReDoS
vulnerabilities in comparison with previous analysis systems,
including a general-purpose slow-down fuzzer.

4This number is different from the result reported in Table 3 because in
this experiment we evaluate using partial-match semantics.

5.4 Real-World Vulnerabilities

We are currently working with NPM package maintainers to
address vulnerabilities discovered in this work. So far, 10
vulnerabilities have been acknowledged and fixed, and 6 CVE
numbers were assigned. Packages for which vulnerabilities
have been acknowledged range from 1 million to 100 million
monthly downloads.

An interesting vulnerability reported by our tool, is
CVE-2021-23425 [1], which is part of a popular string
processing library, and has O(2") worst-case time com-
plexity. The vulnerable regular expression is the follow-
ing: ~(2:\r\n[\n|\r)+| (?:\r\n|\n|\r) +$, and is used
to match newlines, either at the beginning or end of a string.
Subject strings that attack this regexp begin with the prefix a,
which ensures that the first component of the disjunction re-
jects, and the second component is evaluated. The pump string
in this case is \r\n: which can match either as (\r\n) or
(\r) (\n) . Finally, the suffix string is the character a, which
ensures that the matcher must attempt all O(2") possible com-
binations of the pump string before the string is finally re-
jected. We observe that repeating the pump-string just 25
times causes 14 seconds of delay, and this time doubles with
each repetition. Repeating the pump-string a mere 80 times
would cause delay of approximately 16 billion years, perma-
nently reducing program throughput to zero. At the time of
writing, this package receives approximately 10 million down-
loads per month, and is transitively included by thousands of
other packages in the NPM ecosystem.

Figure 5 plots a cumulative distribution function (CDF) of
the minimum known string lengths that cause 10 seconds of
delay for all vulnerable regexps in our dataset. The median
length is 65 KB, which indicates that the budget of 1 mil-
lion characters was extremely generous, as most vulnerable
regexps cause significant delay with under 10% of that limit.

We now answer RQ3 in the affirmative: REGULATOR is
effective at discovering previously unknown vulnerabilities
in real-world packages.

5.5 Limitations

Invalid pump formulas. In these experiments, the slowdown-
pumper generated some pump-formulas that did not pass dy-
namic validation. Upon manual inspection, we find that these
primarily arise from two root causes. First, some regexps ex-
hibit super-linear behavior at lengths tested by the pumper,
but become benign at even larger lengths. For example, the
complexity of ab*\w{1024}c is O(nz) when n = 1024, but
O(n) n > 1024. Second, some regexps exhibit super-linear
behaviour, but the running-time grows too slowly to exploit —
this primarily occurs when the pump sting is very long.

False Negatives. In the prior two experiments, REGULATOR
failed to identify 141 vulnerable regexps. In the comparison

REGULATOR Revealer ReScue RXXR2 Rexploiter NFAA
Backreferences \ i 4 X v v X X
Lookarounds (?=) v v v X X X
Non-capturing groups (?:) v v v X X X
Named groups (?<Name>) v 4 v X X X
Unicode beyond 0xFFFF v v v X X X
Word Boundary \b, \B v v v X X X
Greedy and lazy quant. v v v v v v
Flags 4 v X X X X

Table 5: Semantics supported by ReDoS detection systems, based on the results presented by Liu [41] and Shen [52]. REGULATOR

supports all semantics of IRREGEXP.

0.8 1

0.6 1

CDF

0.4 1

0.24

0.04

10° 10* 10° 10°
String length to reach 10 seconds delay

Figure 5: CDF of attack string length required for 10 seconds
of delay. Vertical and horizontal lines are drawn to show the
median (65 KB)

with PerfFuzz, 23 of these were caused by REGULATOR’s fuzz
witness being much slower than the one found by PerfFuzz.
This caused the slowdown-pumper to time out, as evaluating
each candidate pump string took more time. In other words,
despite our tool found a valid candidate, we are unable to
synthetize a pump formula. In the comparison to NFA-based
tools, 52 false-negatives were also caused by a timeout in the
slowdown-pumper. To verify this cause, we introduced an
exponential backoff to the fuzzing phase: if the slowest input
exceeds 500,000 instructions in path-length, then we restart
the fuzzer, configured to find a witness one-half as long. The
goal of this is to produce witness strings which run faster,
but still demonstrate ReDoS vulnerability. Upon a rerun with
this new technique, REGULATOR was able to identify a valid
pump formula for all these 75 regexps.

The remaining false-negatives are related to two main
causes. First, some regexps contain two slow components,
both of which are super-linear at 200 characters, but only one
is super-linear at larger lengths. If the witness string only ex-
ercises the slow component that is not vulnerable at larger
lengths, then no vulnerability will be identified. Second, some
regexps’ running-time growth functions are not smooth, and

are difficult to classify by measurement and regression. If the
pumper does not have a strong model-fit for a super-linear
growth function, then no vulnerability will be identified.

6 Related Work

ReDoS Static Detection. The first tool based on static anal-
ysis of regexp to detect ReDoS was safe-regex, released by
Halliday [36] in 2013. This tool calculates the star height of a
regular expression, which is the maximum depth of nested star
quantifiers, and reports a vulnerability when this number is
greater than 1. While this tool is extremely fast, the star depth
condition is only necessary but not sufficient, and therefore
safe-regex has low recall and precision [28].

In the next several years, the academic community pro-
posed several more sophisticated approaches: RXXR2 [48],
Weideman’s NFAA [64], Wustholz’s Rexploiter [65], and
most recently Liu’s Revealer [41]. These analyses involve
significant formal theoretical work, but fail to capture the en-
tire set of features available in modern regexp engines. The
results presented in this paper highlight the limitations of
static approaches, and demonstrate that dynamic analysis is
an effective alternative.

ReDoS Dynamic Detection. The first attempt to dynamically
detect ReDoS attacks was presented by Sullivan [58], with
the tool SDL Regex Fuzzer. This tool automatically generates
subject strings and times how long the matching engine takes
to process it. SDL Regex fuzzer derives its inputs first by cre-
ating a set of subject strings that match the regexp under test,
and then applying a single mutation strategy — appending
a random character to the end of each string. ReScue [52]
operates on a similar theory, but dynamically explores an
extended NFA based on Java’s regexp engine, with smarter
mutation strategies. While this technique may be enough to
find exponentially vulnerable regexps, it does not suffice to
identify polynomial backtracking, where a pump string must
be repeated hundreds of times before the matching engine
shows a considerable slowdown.

ReDoS Prevention. Different approaches have been pro-
posed to prevent ReDoS attacks. The first line of research

is based on automatically transforming vulnerable regexps
into safe ones [23,24]. For instance, van der Merwe et. al. [60]
proposed a series of techniques to reduce or remove the root
cause of ReDoS attacks — i.e., ambiguity during matching.
Cody-Kenny et. al. [25] proposed to improve the performance
of regular expression using a genetic programming algorithm.
Li et al. [40] presented FlashRegex, a technique that is able
to deduce safe regexps by either synthesizing or repairing
existing ones, starting from a set of matching subject strings.
Another line of research focuses on modifying the matching
engine to avoid super-linear behavior. Davis et al. [27] pro-
poses selective memoization to obtain linear time matching,
albeit by increasing the space complexity. Rust’s regexp en-
gine [6] and Google’s stand-alone engine RE2 [5] both offer
guaranteed linear matching time. However, neither of these
support extended syntax features. Finally, Davis et al. [28]
identified three super-linear regex anti-patterns that the au-
thors suggest to avoid, to reduce the likelihood of writing a
vulnerable regexp.

Empirical Studies. The interactions between regular expres-
sion, developers, and the software development process have
been extensively studied in previous research [13,22,42,63].
Chapman et al. [20] explored the context and the features of
regular expressions used in Python projects. Davis et al. [29]
report that regular expression re-usage is prevalent among
developers, and how this practice can lead to semantic and
translation problems. Wang et al. [61,62] studied how regular
expression bugs are fixed, based on pull requests of popular
open-source projects.

Algorithmic Complexity. The most promising technique to
find inputs that causes slowdowns is PerfFuzz [39], which we
extensively evaluate in this paper. In a similar spirit, Slow-
Fuzz [47] finds pathologically slow inputs, but uses a one-
dimensional objective (i.e., the instruction count) which was
proven to be less effective than PerfFuzz [39]. Finally, Blair
proposed HotFuzz [16], a framework based on micro-fuzzing
to find algorithmic complexity attacks in Java libraries.

7 Conclusions

Despite their popularity and broad application, regexps are
still extremely difficult for users to get right. In particular,
users may inadvertently expose themselves to ReDoS: a sub-
tle, but deadly attack that can effectively stop all program
progress. In this paper, we introduce REGULATOR, a novel
dynamic analysis tool for finding ReDoS-vulnerable regexps.
REGULATOR uses a novel approach: by instrumenting the
real regexp matching system directly, it is able to effectively
identify ReDoS without requiring complex analyses or extra
effort to support modern regexp features. Moreover, REGULA-
TOR can handle by design any additional features that will be
added to the matching system in the future. We use REGULA-
TOR to instrument IRREGEXP, one of the most popular regexp

matching systems in use today. We find that REGULATOR is
able to identify between two to seven times more vulnerable
regexps than current state-of-the-art tools.

8 Acknowledgements

We would like to thank our reviewers for their valuable com-
ments and input to improve our paper. This material is based
upon work supported by the NSF under Award No. CNS-
1704253, by the Office of Naval Research under Award No.
NO00014-17-1-2011, and by DARPA under agreement num-
ber HR001118C0060. The U.S. Government is authorized to
reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon. The views
and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or implied,
of any of the named funding agencies.

References

[1] CVE-2021-23425. https://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2021-23425.

[2] libFuzzer — a library for coverage-guided fuzz testing.
https://www.llvm.org/docs/LibFuzzer.html.

[3] RegExr: Learn, Build, & Test RegEx. https://regexr.
com/.

[4] CodeQL for research | GitHub Security Lab. https://
securitylab.github.com/tools/codeql/, 2021.

[5] Re2 is a fast, safe, thread-friendly alternative to back-
tracking regular expression engines like those used
in pcre, perl, and python. https://github.com/
google/re2, 2021.

[6] regex - rust.
regex/, 2021.

https://docs.rs/regex/1.5.4/

[7] regexlib.com. https://regexlib.com, 2021.

[8] Snort - Network Intrusion Detection & Prevention Sys-
tem. https://www.snort.org/, 2021.

[9] StackOverflow.
2021.

https://stackoverflow.com/,

[10] Cyril Allauzen, Mehryar Mohri, and Ashish Rastogi.
General algorithms for testing the ambiguity of finite
automata. In Masami Ito and Masafumi Toyama, edi-
tors, Developments in Language Theory, pages 108—120,
Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[11] Jeff Avallone. Regexper. https://regexper.com.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-23425
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-23425
https://www.llvm.org/docs/LibFuzzer.html
https://regexr.com/
https://regexr.com/
https://securitylab.github.com/tools/codeql/
https://securitylab.github.com/tools/codeql/
https://github.com/google/re2
https://github.com/google/re2
https://docs.rs/regex/1.5.4/regex/
https://docs.rs/regex/1.5.4/regex/
https://regexlib.com
https://www.snort.org/
https://stackoverflow.com/
https://regexper.com

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Gina R. Bai, Brian Clee, Nischal Shrestha, Carl Chap-
man, Cimone Wright, and Kathryn T. Stolee. Explor-
ing tools and strategies used during regular expression
composition tasks. In Proceedings of the 27th Interna-
tional Conference on Program Comprehension, ICPC

’19, page 197-208. IEEE Press, 2019.

Gina R Bai, Brian Clee, Nischal Shrestha, Carl Chap-
man, Cimone Wright, and Kathryn T Stolee. Exploring
tools and strategies used during regular expression com-
position tasks. In 2019 IEEE/ACM 27th International
Conference on Program Comprehension (ICPC), pages
197-208. IEEE, 2019.

Martin Berglund and Brink van der Merwe. Regu-
lar expressions with backreferences re-examined. In
Jan Holub and Jan Zd drek, editors, Proceedings of
the Prague Stringology Conference 2017, pages 3041,
Czech Technical University in Prague, Czech Republic,
2017.

Joao Bispo, loannis Sourdis, Joao M.P. Cardoso, and
Stamatis Vassiliadis. Regular expression matching for
reconfigurable packet inspection. In 2006 IEEE Interna-
tional Conference on Field Programmable Technology,
pages 119-126, 2006.

William Blair, Andrea Mambretti, Sajjad Arshad,
Michael Weissbacher, William Robertson, Engin Kirda,
and Manuel Egele. Hotfuzz: Discovering algorithmic

denial-of-service vulnerabilities through guided micro-
fuzzing. arXiv preprint arXiv:2002.03416, 2020.

Robert S. Boyer and J. Strother Moore. A fast string
searching algorithm. Commun. ACM, 20(10):762-772,
October 1977.

Mathias Bynens. ECMAScript regular expressions
are getting better! https://web.archive.org/web/
20210304234832/https://mathiasbynens.be/
notes/es-regexp-proposals, 2017.

Carl Chapman and Kathryn T. Stolee. Corpus dataset.
https://github.com/softwarekitty/tour_
de_source/blob/master/analysis/pattern_
tracking/corpusPatterns.txt, 2015.

Carl Chapman and Kathryn T. Stolee. Exploring regular
expression usage and context in python. In Proceedings
of the 25th International Symposium on Software Testing
and Analysis, ISSTA 2016, page 282-293, New York,
NY, USA, 2016. Association for Computing Machinery.

Carl Chapman, Peipei Wang, and Kathryn T. Stolee. Ex-
ploring regular expression comprehension. In 2017 32nd
IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE), pages 405-416, 2017.

(22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

Carl Chapman, Peipei Wang, and Kathryn T Stolee. Ex-
ploring regular expression comprehension. In 2017 32nd
IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE), pages 405-416. IEEE, 2017.

Nariyoshi Chida and Tachio Terauchi. Automatic re-
pair of vulnerable regular expressions. arXiv preprint
arXiv:2010.12450, 2020.

Miles Claver, Jordan Schmerge, Jackson Garner, Jake
Vossen, and Jedidiah McClurg. Regis: Regular expres-
sion simplification via rewrite-guided synthesis. arXiv
preprint arXiv:2104.12039, 2021.

Brendan Cody-Kenny, Michael Fenton, Adrian Ron-
ayne, Eoghan Considine, Thomas McGuire, and Michael
O’Neill. A search for improved performance in regular
expressions. In Proceedings of the Genetic and Evo-
lutionary Computation Conference, pages 1280-1287,
2017.

Erik Corry, Christian Plesner Hansen, and
Lasse Reichstein Holst Nielsen. Irregexp,
google chrome’s new regexp implementation.

=https://blog.chromium.org/2009/02/irregexp-google-
chromes-new-regexp.html, Feb 2009.

James Davis, Francisco Servant, and Dongyoon Lee. Us-
ing selective memoization to defeat regular expression
denial of service. In 2021 IEEE Symposium on Security
and Privacy (SP), 2021.

James C. Davis, Christy A. Coghlan, Francisco Servant,
and Dongyoon Lee. The impact of regular expression
denial of service (redos) in practice: An empirical study
at the ecosystem scale. In Proceedings of the 2018 26th
ACM Joint Meeting on European Software Engineer-
ing Conference and Symposium on the Foundations of
Software Engineering, ESEC/FSE 2018, page 246-256,
New York, NY, USA, 2018. Association for Computing
Machinery.

James C Davis, Louis G Michael IV, Christy A Cogh-
lan, Francisco Servant, and Dongyoon Lee. Why aren’t
regular expressions a lingua franca? an empirical study
on the re-use and portability of regular expressions. In
Proceedings of the 2019 27th ACM Joint Meeting on
European Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering, pages

443-454, 2019.

James C. Davis, Eric R. Williamson, and Dongyoon Lee.
A sense of time for javascript and node.js: First-class
timeouts as a cure for event handler poisoning. In 27th
USENIX Security Symposium (USENIX Security 18),
pages 343-359, Baltimore, MD, August 2018. USENIX
Association.

https://web.archive.org/web/20210304234832/https://mathiasbynens.be/notes/es-regexp-proposals
https://web.archive.org/web/20210304234832/https://mathiasbynens.be/notes/es-regexp-proposals
https://web.archive.org/web/20210304234832/https://mathiasbynens.be/notes/es-regexp-proposals
https://github.com/softwarekitty/tour_de_source/blob/master/analysis/pattern_tracking/corpusPatterns.txt
https://github.com/softwarekitty/tour_de_source/blob/master/analysis/pattern_tracking/corpusPatterns.txt
https://github.com/softwarekitty/tour_de_source/blob/master/analysis/pattern_tracking/corpusPatterns.txt
=

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

Firas Dib. regex 101: build, test, and debug regex.
https://regex101.com/.

Anonymzed for submission. Npm dataset. Anonymzed
for submission., 2021.

Shuitao Gan, Chao Zhang, Xiaojun Qin, Xuwen Tu,
Kang Li, Zhongyu Pei, and Zuoning Chen. Collafl: Path
sensitive fuzzing. In 2018 IEEE Symposium on Security
and Privacy (SP), pages 679-696, 2018.

Seymour Ginsburg and Joseph Ullian. Ambiguity in con-
text free languages. Journal of the ACM, 13(1):62-89,
Jan 1966.

John Graham-Cumming. Details
of the Cloudflare outage on July 2,
2019. https://blog.cloudflare.com/

[43]

[44]

[45]

details-of-the-cloudflare-outage-on-july-2-2019/,

2019.

James Halliday. safe-regex. https://github.com/
substack/safe-regex/commits/master, 2013.

lain Ireland. @A New RegExp Engine in Spider-
Monkey. https://hacks.mozilla.org/2020/06/
a-new-regexp-engine-in-spidermonkey, Jun

2020.

James Kirrage, Asiri Rathnayake, and Hayo Thielecke.
Static analysis for regular expression denial-of-service
attacks. In Javier Lopez, Xinyi Huang, and Ravi Sandhu,
editors, Network and System Security, pages 135-148,
Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

Caroline Lemieux, Rohan Padhye, Koushik Sen, and
Dawn Song. Perffuzz: Automatically generating patho-
logical inputs. In Proceedings of the 27th ACM SIG-
SOFT International Symposium on Software Testing and
Analysis, ISSTA 2018, page 254-265, New York, NY,
USA, 2018. Association for Computing Machinery.

Yeting Li, Zhiwu Xu, Jialun Cao, Haiming Chen,
Tingjian Ge, Shing-Chi Cheung, and Haoren Zhao.
Flashregex: Deducing anti-redos regexes from exam-
ples. In 2020 35th IEEE/ACM International Conference
on Automated Software Engineering (ASE), pages 659—
671. IEEE, 2020.

Yinxi Liu, Mingxue Zhang, and Wei Meng. Revealer:
Detecting and exploiting regular expression denial-of-
service vulnerabilities. In 2021 IEEE Symposium on Se-
curity and Privacy (SP), pages 1063—-1079. IEEE Com-
puter Society, 2021.

Louis G Michael, James Donohue, James C Davis,
Dongyoon Lee, and Francisco Servant. Regexes are

[46]

[47]

(48]

[49]

(50]

[51]

[52]

hard: Decision-making, difficulties, and risks in pro-
gramming regular expressions. In 2019 34th IEEE/ACM
International Conference on Automated Software Engi-
neering (ASE), pages 415-426. IEEE, 2019.

Barton P. Miller, Louis Fredriksen, and Bryan So. An
empirical study of the reliability of unix utilities. Com-
mun. ACM, 33(12):32-44, December 1990.

Michael Mulder and George S Nezlek. Creating protein
sequence patterns using efficient regular expressions in
bioinformatics research. In 28th International Confer-
ence on Information Technology Interfaces, 2006., pages
207-212. IEEE, 2006.

Andres Ojamaa and Karl Diiiina. Security assessment
of node.js platform. In Venkat Venkatakrishnan and Di-
ganta Goswami, editors, Information Systems Security,
pages 35—43, Berlin, Heidelberg, 2012. Springer Berlin
Heidelberg.

Jignesh Patel, Alex X. Liu, and Eric Torng. Bypassing
space explosion in regular expression matching for net-
work intrusion detection and prevention systems. In In
Proceedings of the 19th Annual Network and Distributed
System Security Symposium, 2012.

Theofilos Petsios, Jason Zhao, Angelos D. Keromytis,
and Suman Jana. Slowfuzz: Automated domain-
independent detection of algorithmic complexity vul-
nerabilities. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security,
CCS ’17, page 2155-2168, New York, NY, USA, 2017.
Association for Computing Machinery.

Asiri Rathnayake and Hayo Thielecke. Static analysis
for regular expression exponential runtime via substruc-
tural logics. CoRR, abs/1405.7058, 2014.

Asiri Rathnayake and Hayo Thielecke. Regexlib dataset.
https://github.com/superhuman/rxxr2/blob/
master/data/input/regexlib-raw.txt, 2016.

Asiri Rathnayake and Hayo Thielecke. Snort
dataset. https://github.com/superhuman/rxxr2/
blob/master/data/input/snort-raw.txt, 2016.

Lise Rommel Romero Navarrete and Guilherme P.
Telles. Practical regular expression constrained se-
quence alignment. Theoretical Computer Science,
815:95-108, 2020.

Yuju Shen, Yanyan Jiang, Chang Xu, Ping Yu, Xiaoxing
Ma, and Jian Lu. Rescue: Crafting regular expression
dos attacks. In 2018 33rd IEEE/ACM International
Conference on Automated Software Engineering (ASE),
pages 225-235. IEEE, 2018.

https://regex101.com/
https://blog.cloudflare.com/details-of-the-cloudflare-outage-on-july-2-2019/
https://blog.cloudflare.com/details-of-the-cloudflare-outage-on-july-2-2019/
https://github.com/substack/safe-regex/commits/master
https://github.com/substack/safe-regex/commits/master
https://hacks.mozilla.org/2020/06/a-new-regexp-engine-in-spidermonkey
https://hacks.mozilla.org/2020/06/a-new-regexp-engine-in-spidermonkey
https://github.com/superhuman/rxxr2/blob/master/data/input/regexlib-raw.txt
https://github.com/superhuman/rxxr2/blob/master/data/input/regexlib-raw.txt
https://github.com/superhuman/rxxr2/blob/master/data/input/snort-raw.txt
https://github.com/superhuman/rxxr2/blob/master/data/input/snort-raw.txt

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

Michael Sipser. Introduction to the theory of compu-
tation. Thomson Course Technology, Boston, 2nd ed..
edition, 2006.

Henry Spencer. A Regular-Expression Matcher, page
35-71. Academic Press Professional, Inc., USA, 1994.

Eric Spishak, Werner Dietl, and Michael D. Ernst. A
type system for regular expressions. In Proceedings of
the 14th Workshop on Formal Techniques for Java-like
Programs, FTfJP "12, page 20-26, New York, NY, USA,
2012. Association for Computing Machinery.

Cristian-Alexandru Staicu and Michael Pradel. Freezing
the web: A study of redos vulnerabilities in javascript-
based web servers. In 27th {USENIX} Security Sympo-
sium ({USENIX} Security 18), pages 361-376, 2018.

Out-
https:

Stack Exchange Network Status.
age Postmortem - July 20, 2016.
//stackstatus.net/post/147710624694/
outage-postmortem-july-20-2016, 2016.

Bryan Sullivan. New Tool: SDL Regex Fuzzer.
https://www.microsoft.com/security/blog/
2010/10/12/new-tool-sdl-regex-fuzzer/, 2010.

K. Thompson. Programming techniques: Regular ex-
pression search algorithm. Commun. ACM, 11:419-422,
1968.

Brink Van Der Merwe, Nicolaas Weideman, and Martin
Berglund. Turning evil regexes harmless. In Proceed-
ings of the South African Institute of Computer Scientists
and Information Technologists, pages 1-10, 2017.

Peipei Wang, Chris Brown, Jamie A Jennings, and
Kathryn T Stolee. An empirical study on regular ex-
pression bugs. In Proceedings of the 17th International
Conference on Mining Software Repositories, pages 103—
113, 2020.

Peipei Wang, Chris Brown, Jamie A Jennings, and
Kathryn T Stolee. Demystifying regular expres-
sion bugs: A comprehensive study on regular expres-
sion bug causes, fixes, and testing. arXiv preprint
arXiv:2104.09693, 2021.

Peipei Wang and Kathryn T. Stolee. How well are regu-
lar expressions tested in the wild? In Proceedings of the
2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Founda-
tions of Software Engineering, ESEC/FSE 2018, page
668-678, New York, NY, USA, 2018. Association for
Computing Machinery.

Nicolaas Hendrik Weideman. Static analysis of regular
expressions. PhD thesis, Stellenbosch: Stellenbosch
University, 2017.

[65]

[66]

Valentin Wiistholz, Oswaldo Olivo, Marijn J. H. Heule,
and Isil Dillig. Static detection of dos vulnerabilities in
programs that use regular expressions. In Axel Legay
and Tiziana Margaria, editors, Tools and Algorithms for
the Construction and Analysis of Systems, pages 3-20,
Berlin, Heidelberg, 2017. Springer Berlin Heidelberg.

Michal Zalewski. Technical "whitepaper" for
afl-fuzz. https://lcamtuf.coredump.cx/afl/
technical_details.txt.

https://stackstatus.net/post/147710624694/outage-postmortem-july-20-2016
https://stackstatus.net/post/147710624694/outage-postmortem-july-20-2016
https://stackstatus.net/post/147710624694/outage-postmortem-july-20-2016
https://www.microsoft.com/security/blog/2010/10/12/new-tool-sdl-regex-fuzzer/
https://www.microsoft.com/security/blog/2010/10/12/new-tool-sdl-regex-fuzzer/
https://lcamtuf.coredump.cx/afl/technical_details.txt
https://lcamtuf.coredump.cx/afl/technical_details.txt

	Introduction
	Background
	RegExp Syntax and Semantics
	Backtracking Regexp Engines
	ReDoS Attacks
	Current ReDoS Detectors

	Regulator: A Dynamic Analysis System
	Feedback-Driven Generational Fuzzer
	Slowdown-Pumper
	Dynamic Validator

	Implementation
	Evaluation
	Does Regulator quickly explore program state-space?
	Comparison with NFA-based approaches
	Base Dataset
	NPM Dataset

	Comparison with PerfFuzz
	Real-World Vulnerabilities
	Limitations

	Related Work
	Conclusions
	Acknowledgements

