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Abstract— Black-box web application vulnerability scanners
attempt to automatically identify vulnerabilities in web applications
without access to the source code. However, they do so by using
a manually curated list of vulnerability-inducing inputs, which
significantly reduces the ability of a black-box scanner to explore the
web application’s input space and which can cause false negatives.
In addition, black-box scanners must attempt to infer that a
vulnerability was triggered, which causes false positives.

To overcome these limitations, we propose Witcher, a novel
web vulnerability discovery framework that is inspired by grey-box
coverage-guided fuzzing. Witcher implements the concept of fault
escalation to detect both SQL and command injection vulnerabilities.
Additionally, Witcher captures coverage information and creates
output-derived input guidance to focus the input generation and,
therefore, to increase the state-space exploration of the web appli-
cation. On a dataset of 18 web applications written in PHP, Python,
Node.js, Java, Ruby, and C, 13 of which had known vulnerabilities,
Witcher was able to find 23 of the 36 known vulnerabilities (64%),
and additionally found 67 previously unknown vulnerabilities, 4 of
which received CVE numbers. In our experiments, Witcher outper-
formed state of the art scanners both in terms of number of vulner-
abilities found, but also in terms of coverage of web applications.

1. Introduction

Web application vulnerabilities are showing no signs of
waning as the number of web application keeps increasing
and the supported frameworks keep diversifying. These web
vulnerabilities, such as SQL injections, can be catastrophic to
the developers of the web application, the companies running
the web application, and the end-users who visit and store their
data on the website application.

Due to the number and diversity of web applications, it
is critical to create automatic techniques that discover web
vulnerabilities. Prior work has proposed different crawling
and detection techniques, which utilizes one of the following
approaches: white-box [1], [2], [3], [4], black-box [5], [6], [7], [8],
and grey-box [9], [10]. However, these approaches are limited
in their applicability to web application language, vulnerability
type, or application inputs.

White-box static analysis tools [1], [2], [3], [4] rely on
analyzing the web application’s source code which is not
always available. Moreover, white-box tools typically model

the semantics of the specific language, which makes them
language-specific, and thus applying those tools to new languages
or frameworks require significant effort.

Black-box web application vulnerability scanners [5], [6],
[7], [8] do not require source code and can analyze any web
application—regardless of the web application’s programming
language. These tools generate legitimate web application
inputs to explore the application and then attempt to infer the
existence of vulnerabilities by sending input designed to trigger
a vulnerability to the web application. The vulnerability-inducing
inputs, however, are significantly constrained as they originate
from manually curated strings or templates based on expert
heuristics for vulnerability types [11]. As a consequence, black-
box scanners will miss vulnerabilities triggered by inputs that
are outside the pre-configured strings and templates. In essence,
using hard-code vulnerability inducing inputs significantly
reduces the ability of a black-box scanner to explore the web
application’s input space, thus introducing false negatives.

Even worse, black-box scanners can only infer vulnerabilities
based on the output of the web application. Such inference can be
error-prone. For example, consider a web application that returns
an HTTP 500 status code (which denotes an internal server error).
Existing black-box scanners such as Burp [5] use this error code to
decide if their vulnerability-inducing input successfully triggered
a vulnerability—in the case of a black-box scanner looking for
a SQL Injection vulnerability, an HTTP 500 error can indicate
that the input caused an SQL error. However, such an error can
be caused by other, unrelated issues, such as an implementation
bug rather than a security vulnerability. Therefore, inferring a
vulnerability from the outside introduces false positives.

Some recent work has introduced the concept of grey-box
fuzzers for automatically testing web applications [9], [10].
These tools use coverage information to guide the generation
of inputs. These tools have had some success; however, the
approaches target only a single language, do not detect SQL or
command injection vulnerabilities, and are closed source [9], and
are relatively slow [10].

In this paper, we propose Witcher, a novel web vulnerability
discovery framework that is inspired by grey-box coverage-
guided fuzzing. Our idea is to explore the web application’s
input space (without solely relying on hard-coded heuristics)
by using execution coverage information to efficiently guide the
generation of random inputs.



The application of grey-box coverage-guided fuzzing to web
vulnerabilities faces a number of challenges. On a high level,
the challenges to web fuzzing arise because the web application
code—the target under test that contains the vulnerabilities of
interest—is not the entire execution object but is instead a small
subcomponent. When fuzzing a binary, the entire binary is both
the execution object and the target under test (i.e., the security
analyst is analyzing whether a vulnerability exists anywhere in
binary). However, when fuzzing web applications the execution
object contains three components: the web server, which parses
the HTTP request; the web application runtime environment,
which uses the input from the web server to generate a
response; and the data storage and local executor, which the web
application’s logic uses to complete the request. For most web
applications, the web application runtime environment breaks
down into two subcomponents: the web application code and
the code’s execution environment (e.g., the interpreter or virtual
environment). The web application code, a subcomponent of the
web application runtime environment, is the target under test that
contains the web application’s logic and the vulnerabilities. The
multi-component aspect and the other non-target components
create several of the challenges that impede the use of grey-box
coverage guided fuzzing to discover web vulnerabilities.
Detecting the input that triggers a web application
vulnerability. Detecting whether an input triggers a vulnerability
requires a tool to reason about the system being in a vulnerable
program state. When detecting memory corruption vulnerabilities,
traditional binary fuzzing uses a segmentation fault as an
indication that input sent to the binary transitioned the system
into a vulnerable program state. Current black-box scanner
approaches use heuristics to infer that a given input triggers a
vulnerable program state. Therefore, a key challenge is to create
an approach that can identify when input to a web application
leads the web application in a vulnerable program state.
Generating feasible inputs for end-to-end execution. As the
execution object is composed of a web server and web application
code, a successful input must satisfy both components (i.e., be
a valid HTTP request for the web server and also include the
necessary input parameters for the web application logic). While,
in theory, a random input generation scheme will eventually
produce feasible inputs, it is critical to design an approach that
generates inputs that are both syntactically and semantically valid
for the target web application, thus fuzzing effectively.
Collecting effective web application coverage. A strength
of grey-box coverage-guided fuzzing for binary applications
is that the fuzzer only keeps randomly generated inputs that
exercise new code of the application and collecting this coverage
information is a critical part of modern fuzzing [12], [13]. One
possible approach for collecting coverage for web applications is
to insert instrumentation into the web application. However, such
an approach is not generally applicable to all web application,
does not scale, and requires source code, which is not always
available. A scalable and web application-independent approach
is necessary to address web application coverage accounting.
Mutating inputs effectively. Similar to binary fuzzing, the muta-
tion strategy of a grey-box coverage-guided fuzzer is also impor-
tant to fuzz web applications effectively. However, little research

has been done to study the mutation strategy for web applications.
Therefore, we need to create mutation strategies that can generate
high-quality new inputs and increase the fuzzing effectiveness.

Witcher is designed to tackle the prior four challenges. It does
not require the source code of individual web applications, and
we show that effective code coverage is possible with only 1–5
lines of changes to the language’s interpreter. This change can
then be used for any web application that runs on the interpreter.
To demonstrate our approach, we implement Witcher support for
web applications written in PHP, Python, Node.js, Java, Ruby,
and C. For each of these languages, Witcher is able to detect both
SQL injection and command injection vulnerabilities.

To demonstrate Witcher’s advantages over the current
state-of-the-art, we perform a multi-faceted evaluation. We
compare different configurations of Witcher, enabling and
disabling different features to demonstrate the features’ efficacy.
We evaluate Witcher on 13 web application with known
vulnerabilities and five modern web applications with no known
vulnerabilities. Overall, Witcher found 90 vulnerabilities in
total, 67 of which were previously unknown. We then compare
Witcher’s code coverage and vulnerability discovery to Burp [5],
a commercial black-box web vulnerability scanner, on nine of
the PHP web applications. Last, we compare Witcher’s code
coverage to the recently published black-box vulnerabilty scanner
Black Widow [14] and the grey-box scanner WebFuzz [10].
In summary, we make the following contributions:

• We create a set of techniques that address the challenges
of applying grey-box coverage-guided fuzzing to web
applications, and we propose a new framework that enables
coverage-guided fuzzing on web applications.

• We develop Witcher, a grey-box web application vulnerabil-
ity fuzzer that can discover multiple types of vulnerabilities
from different web applications. Witcher automatically
analyzes server-side binary and interpreted web applications
written in PHP, JavaScript, Python, Java, Ruby, and C and
detects SQL injection, command injection, and memory
corruption vulnerabilities (only in C-based CGI binaries).

• We evaluate Witcher to understand the specific impacts
achieved by our various techniques, the effectiveness
of the approach on real-world web applications, and its
applicability to the analysis of non-traditional targets such
as IoT devices. In our evaluation, Witcher identified 23
out of 36 known vulnerabilities, which outperforms the
state-of-the-art web vulnerability discovery tool. Moreover,
in all but one web application, Witcher reached more lines
of code than the state-of-the-art scanners Black Widow and
WebFuzz. Witcher also identified 67 previously unknown
vulnerabilities, which we are in the process of disclosing
to the relevant parties.

To support open science and future researchers in the field, we
will open source our Witcher prototype, our dataset of web
applications, and the results of our experiment upon publication
of this paper.

2. Background

Before we discuss the details of Witcher, we first introduce
web application and injection vulnerabilities, and then provide
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a high-level overview of automated application testing and
coverage-guided fuzzing.

2.1. Web Applications and Vulnerabilities

Typically, a web application runs on a web server and
interacts with its clients over a network. A client accesses the
web application by sending an HTTP request to the web server,
which parses and routes the request to the web application. The
web application takes the input, performs the appropriate actions,
and responds to the request. In this architecture, the web server
acts as a gateway to the web application and a web application
can be written in any language. Witcher accesses web application
resources using either HTTP requests or direct Custom Gateway
Interface (CGI) requests.
HTTP Requests. HTTP is a stateless client–server protocol used
by web servers [15]. An HTTP request consists of a request line,
zero or more header fields, and an optional message body.

Although they are not limited to it1, web applications
typically accept user input through the Cookie header (used
for establishing stateful-requests), URL query parameters
(ampersand-delimited list of name=value pairs), and the HTTP
body (ampersand-delimited list of name=value pairs). For
simplicity, we refer to all of the methods for transmitting user
input (the headers, the URL query string, and the HTTP body)
as HTTP parameters or simply parameters.
CGI Requests. The Custom Gateway Interface (CGI) enables a
web server to directly invoke executable programs by translating
an HTTP request into a CGI request (where aspects of the HTTP
request are accessible via environment variables and standard
input) [16]. Although many web applications replaced CGI
with FastCGI, Apache Modules, and NSAPI plugins [17], CGI
applications are still extensively used in embedded devices, such
as routers and web cameras [18].
Injection Vulnerabilities. Injection vulnerabilities are an
instance of code and data mixing [19], and they occur when
a web application sends unsanitized user data to an external
parser, such as the shell to execute commands or a database to
execute a SQL query. A malicious adversary can exploit such
a vulnerability by supplying user input that tricks the external
parser into mis-interpreting the user-supplied data as code, thus
altering the semantics of the parsing.

In a SQL injection vulnerability, an attacker sends a properly
formatted payload with SQL code in their input, which is sent
to the database as an SQL query. When the database executes the
query, it also executes the attacker’s injected SQL code. Similarly,
in a command injection vulnerability, an attacker creates a
payload that causes additional shell commands to execute.

2.2. Motivating Example

Consider the PHP web application in Listing 1 in the
Appendix, which we created based on patterns that exist in
real-world web applications and CVEs (described in § 5.2).
Depending on the page’s purpose, it offers the user different
form fields. For additions to the database, it includes pname and

1. A web application may parse any aspect of the HTTP request for user input.

ptype. For updates to the database, it includes pid and ptype.
However, in this example, the update functionality was removed
from the web application front-end but was left in the server side
PHP. As a result, the client interface does not give any hint about
the update functionality, which makes it unlikely for a black-box
vulnerability scanner to trigger the latent PHP update code.

The code in Listing 1 contains three SQL injection vulnerabil-
ities that the commercial black-box vulnerability scanner, Burp,
does not detect. The first vulnerability exists in the add functional-
ity. A successful attack requires a change to occur in the first half
of the ptype field, which is used in the SQL statement without
being sanitized. The second vulnerability occurs in the latent PHP
update code. For an attacker to exercise the vulnerability, they
must discover the update action and use the color portion of
the ptype field to exploit the vulnerability. The last vulnerability
requires the use of the add and update functionality because the
update code requires the pid to exist in the database but does
not enforce any limitations on the format of the pid. Thus, an
attacker inserts the payload into the pid field in the database and
then triggers an update to exploit the third vulnerability.

A black-box vulnerability scanner will most likely not find
any of the three vulnerabilities. It is unlikely to find the first
vulnerability because to reach it the ptype variable must contain
an underscore, which does not exist in the scanner’s predefined
list of payloads. Next, black-box scanners are unlikely to find the
other vulnerabilities because the client interface does not include
the value necessary to trigger the update.

Nevertheless, Witcher finds all three of the vulnerabilities
automatically. Witcher finds the first vulnerability by mutating
valid input to include the underscore and values that will result
in a malformed SQL statement. On parsing the malformed SQL,
Witcher detects the vulnerability. Witcher finds the other two
vulnerabilities because during the fuzzing process it will mutate
act’s value to ’u’ and mark the input as interesting because act=u
resulted in a previously unseen program state. Witcher then
concentrates on the interesting input, which will cause Witcher to
trigger the second vulnerability by adding a malformed version
of ptype and the third vulnerability by using a malformed pid
value that was stored into the pid column using the ’a’ action.
Although the third vulnerability requires the application to enter
a particular state, Witcher does not analyze the application state;
instead, Witcher triggers the vulnerability because the database
maintains the proper state between requests.2

2.3. Automated Application Testing

Automated application testing falls into one of three
categories, which vary depending on how much access the
testing technique has to the application: black-box, white-box,
and grey-box. In black-box testing, the testing runs without
access to the internals of the target application [13]. As a result,
black-box testing focuses only on the inputs and outputs of the
application [20]. For example, a black-box web vulnerability
scanner, such as Burp or Skipfish, works from outside a web
application to find new inputs [21].

2. Unlike most binary fuzzing targets where each execution is a blank slate,
the database preserves state between executions.
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On the other end of the spectrum, white-box tools generate in-
puts by analyzing the source code of the application with the goal
of better understanding the application’s semantics [13]. Some
examples of white-box analysis include symbolic execution and
taint tracking [22], [23], [24]. White-box tools have access to the
target application’s source. Thus, white-box tools can reason about
the internal structure as well as the operation of the application and
can evaluate operation without being limited to paths that can be
reached during execution; however, they are focused on a partic-
ular programming language and often suffer from false positives.

Grey-box testing blurs the line between white- and black-box
testing as it runs with limited access to the application. The testing
application uses a less-intensive form of either static or dynamic
analysis. For example, coverage-guided mutational fuzzing
uses either static or dynamic instrumentation to gather coverage
information, which is used to identify input that exercises new
execution paths in a program (thus breaking the purely black-box
approach).

2.4. Coverage-Guided Fuzzing

Fuzzers automatically test applications by inputting test cases
and causing the target application to enter different program
states. When the fuzzer starts, it receives a set of input seeds that
it places into a test case queue. The fuzzer then derives new test
cases from those in the queue.

To derive a test case from those in the queue, the fuzzer
mutates the test case using a variety of mutation strategies.
For example, American Fuzzy Lop (AFL) uses deterministic
mutation strategies such as bit flipping, integer arithmetic,
and dictionary insertion [25]. In addition, AFL uses random
strategies such as random splicing and insertion of data from
a user-supplied dictionary. After mutating the input, the fuzzer
sends the altered input to the target application.

For coverage-guided fuzzing, the fuzzer captures coverage
data that approximates the program states to guide test case
selection. The fuzzer captures coverage data that approximates
the program states that is far less complete than an execution trace.
The instrumentation approximates the program states because
it is too processing intensive for a fuzzer to capture and analyze
a complete execution trace for each execution. The fuzzer obtains
coverage data through either static or dynamic instrumentation.
For static instrumentation, an analyst compiles the target
application’s source code with a modified compiler. For dynamic
instrumentation, a dynamic instrumentation tool (e.g., Pin) or a
emulator modified to provide coverage data (e.g., QEMU-user)
produces coverage information during execution [26], [27].

A coverage guided fuzzer saves a test case when it deems the
test case as interesting. The fuzzer tags a test case as interesting
when it causes the program to reach a new location or causes the
application to emit a fatal signal, such as a segmentation fault,
which often means the application entered a vulnerable state.

3. Challenges

Inherent challenges exist in creating a grey-box coverage-
guided web application vulnerability fuzzer. We group these

challenges into those that enable automated analysis and those
that augment the exploration of the input space.

3.1. Enabling Fuzzing of Web Applications

Enabling the automated analysis of web applications requires
the fuzzer to generate input that will reach the target application
and to detect the existence of a vulnerability.
1. How to detect web injection vulnerabilities? A fuzzer’s goal

is to identify when a test case causes the program to enter a vul-
nerable program state. Typically, the types of faults generated
by SQL and command injection vulnerabilities do not culmi-
nate in an error signal that a fuzzer can detect and they often
occur in a separate process (e.g., the data storage layer). There-
fore, we must develop a new approach that will enable the
fuzzer to detect SQL and command injection vulnerabilities.

2. How does the system generate a test case that will exercise
an end-to-end execution of the web application? Web
applications require the test cases to match a semi-structured
format to pass both the syntax checks of the web server and
the semantics of the web application. In contrast, mutational
fuzzers generate high-entropy random data that does not
effectively explore the input space of applications.
Without enforcing some structure on the test cases, the fuzzer
will not be able to explore the state space of the web applica-
tion. First, if the test case fails to meet the HTTP request format,
then the test case will not reach the target web application
because the web server will reject it. (see § 2.1). Second, the
test case must include the parameters expected by the target ap-
plication. Without the parameter variable names, a reasonable
exploration of the target’s input space is impossible because a
fuzzer would generate billions of test cases to randomly guess
a single variable name of only a few characters.

3.2. Augmenting Fuzzing for Web Injection
Vulnerabilities

Even if a fuzzer meets the prior challenges to enable fuzzing
for web applications, adding those features is not sufficient
to efficiently explore the target’s input space and discover the
vulnerabilities. Analysis of applications using a coverage-guided
mutational fuzzer is a computationally intensive task and despite
numerous resources its use often results in only a portion of the
input space being explored. For web applications, this problem
is even worse because fuzzers do not receive execution trace
information from the targeted web application code and the
fuzzer does not effectively mutate the parameter and values.
1. How to effectively collect coverage of the web application?

Coverage-guided fuzzers require instrumentation of the target
application to gather coverage information. However, in the
case of fuzzing applications written in interpreted languages,
limited tools exist that allow instrumentation of the target web
application. Instead, the fuzzer instruments the interpreter’s
runtime binary—not the target web application code. As a
result, the coverage information reflects the interpreter’s code
and not the target web application, thus causing the fuzzer to
focus on exploring the runtime interpreter’s code instead of the
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web application’s code. Although coverage of the interpreter
will change with alterations to the web application’s execution,
a large portion of the coverage data is irrelevant noise that
obfuscates the target web application’s coverage information.
Therefore, to facilitate exploration of a web application the
instrumentation must only report the target web application’s
execution.

2. How to effectively mutate test cases? Although efficient for
generating test cases for binary application input, the mutation
strategies used by fuzzers focus on the creation of test cases
with high-entropy that require no context. However, these
high-entropy test cases are less effective for the exploration of
web application’s input state space. Even if the high-entropy
test cases are properly formed HTTP requests, the test cases
lack efficacy in testing web applications because they fail
to take advantage of the contextual information available
to the client (e.g., the variable names found in the HTML
form fields). Therefore, it is necessary to create new mutation
strategies that incorporate the proper format and exploits the
context offered by the web application’s client interface.

4. Witcher’s Design
Witcher is a grey-box web vulnerability scanner that uses a

coverage-guided mutation fuzzer to drive the automated explo-
ration of web applications. Witcher is categorized as a grey-box
fuzzer because, similar to traditional coverage-guided fuzzing, it
relies on coverage data to identify interesting test cases. Other
than instrumenting an interpreter for coverage data, Witcher does
not perform any analysis on the source code; thus, Witcher can
operate without any access to the source because it can run a
byte-code version of a web application. As much of the binary
fuzzing research uses AFL as a starting point, we chose to use
AFL as the base for demonstrating the efficacy of the Witcher
framework.

Witcher solves the challenges impeding the use of coverage-
guided mutation fuzzing (described in § 3) using five additional
components. To enable fuzzing for web injection vulnerabilities,
Witcher implements the Fault Escalator, the HTTP Harness,
and the Request Crawler (the blue components in Figure 1).
To augment fuzzing for web injection vulnerabilities, Witcher
implements the Coverage Accountant and the HTTP Mutator (the
green components in Figure 1).

4.1. Enabling Fuzzing for SQL and Command
Injection Vulnerabilities

4.1.1. Fault Escalator. For a program to be free of vulnerabilities
it must be impossible for user-supplied input to transition the
program to a vulnerable program state, thus by identifying
when this vulnerable program state occurs a scanner can detect
a vulnerability in the target application. In traditional binary
fuzzing, the vulnerable state results from a memory corruption
vulnerability and binary fuzzers detect the transition to a
vulnerable state by detecting a segmentation fault signal [13].

We leverage this insight and expand the concept to allow the
fuzzer to detect when a program transitions to a vulnerable pro-
gram state resulting from a SQL or command injection vulnerabil-
ity. SQL and command injection vulnerabilities occur when user

input causes an external parser (shell command parsing for com-
mand injection and SQL parsing for SQL injection) to interpret the
user input data as code. For example, a SQL injection vulnerability
occurs when attacker-controlled input alters the syntax of a SQL
query. In a well-formed SQL query, user-controlled input cannot
alter the syntax of a SQL query. As a result, we can view a
syntax error thrown by an external parser as analogous to the
segmentation fault signal that results from a memory corruption
vulnerability. This correlation forms the basis behind Fault Escala-
tor: if attacker controlled input causes a syntax error in the external
parser, then an attacker can alter the command, and it is more
likely than not that an exploitable vulnerability exists. Thus, when
the parsing error occurs, Fault Escalator escalates the error to a seg-
mentation fault, which notifies the fuzzer that the current test case
caused a vulnerable program state. For example, imagine a PHP
application that executes mysqli_query($con,"SELECT ID
from tbl where ID=". $_GET['id']) and the fuzzer sets id=1',
which results in a malformed SQL statement due to the single
quote. When the page executes the SQL statement, the SQL parser
will return a parsing error, which is intercepted by Fault Escalator
and escalated to a segmentation fault that is detected by the fuzzer.

If an application uses unsanitized input to create a SQL
statement or a shell command, then the stochastic input generated
by the fuzzer is likely to result in a parsing error. 2Although not
every input generated by a fuzzer will cause a SQL syntax error
in a vulnerable query, given the stochastic nature of the fuzzer,
it is unlikely that an vulnerable query will fail to result in a SQL
parsing error during a fuzzing session. This is also confirmed by
our experiments: none of the vulnerabilities that Witcher missed
are related to false negatives in Fault Escalator.

Command Injection Escalation. For command injection,
Witcher implements fault escalation using dash’s command
parser. The program dash is the Debian Almquist shell, which
is designed to be POSIX-compliant and as small as possible.
Dash replaces /bin/sh on most Linux systems [28]. Linux uses
/bin/sh, and its smaller replacement dash, when an application
executes a shell command. For example, a PHP script using
exec(), system(), or passthru(), or a Node.js script using
exec()3 send their command to /bin/sh, which means that dash
parses and runs the command. Witcher’s version of dash (3 lines
of code difference from the original) escalates a parsing error to
a segmentation fault. Thus, if the application uses unsanitized
user input to create a SQL or shell command, then the random
data input by the fuzzer into the web application will result in
a parsing error and trigger a segmentation fault.

SQL Injection Escalation. Witcher’s Fault Escalator implements
SQL injection escalation for MySQL and PostgreSQL using a
technique similar to command injection escalation. To catch the
syntax error, Witcher uses LD_PRELOAD to hook the libc
function recv(), which is used to communicate with the database.
Whenever any response from the database contains a SQL syntax
error message, Witcher triggers a segmentation fault.

Fault Escalation is not Limited to Syntax Errors. Although
the fault escalation techniques for SQL and command injection
detection rely on the existence of a syntax error, the concept of

3. Node.js’s spawn() method does not use /bin/sh.
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Figure 1: Overview of Witcher. Witcher’s components with a blue border are enabling (i.e., necessary to fuzz a web application). Witcher’s components
with a green border are augmenting and enhance the fuzzer’s performance on web applications.

fault escalation applies any type of warning, error, or pattern.
For example, Witcher might handle file inclusion by overriding
libc’s open function and escalating an error when the filename
parameter contains non-ascii values.
Memory Corruption Vulnerabilities. Witcher detects memory
corruption vulnerabilities in CGI binary applications without the
aid of fault escalation. This occurs because the fuzzer inherently
detects memory corruption vulnerabilities when executing a
binary application due to the segmentation fault triggered by the
input.
Bugs and Vulnerabilities. Similar to a segmentation fault,
the occurrence of a syntax error in a SQL statement or shell
command resulting from user input signifies a bug that should
be fixed and is highly likely to be vulnerable. In our evaluations,
the occurrence of a syntax error signified a problem with the
validation or sanitization of user input, which often meant the
existence of SQL or command injection vulnerability.

However, it is possible that, due to constraints on user input,
an attacker is unable to leverage the syntax error to exploit
the SQL injection or command injection. For example, a web
application that restricts an unsanitized parameter to be only
one character, might not represent an exploitable vulnerability,
but rather a bug. For this reason, in this paper, we will label any
escalated fault as either a vulnerability or a bug, depending on
whether we confirmed the vulnerability was exploitable or not.
Cross-site Scripting Vulnerabilities. The fault escalation tech-
nique leverages the randomness generated by the fuzzer to identify
critical vulnerabilities in the server environment. Unfortunately,
cross-site scripting vulnerabilities do not readily fall into this cat-
egory (browsers are very forgiving in their parsing of HTML and
therefore it can be difficult to reliably and quickly detect an cross-
site scripting in HTML). As a result, we choose to focus on com-
mand injection and SQL injection. Moreover, SQL and command
injection vulnerabilities represent a class of vulnerabilities that
mutation-based fuzzers could not readily detect prior to our work.

4.1.2. Request Crawler. The Request Crawler (Reqr) operates
as a black-box crawler that automatically discovers HTTP
requests and parameters. Reqr extracts HTTP requests from all
types of web applications including web applications that rely
heavily on client-side JavaScript to render the web application’s
interface, links, forms, submissions, and requests (e.g., Rconfig,
Juice Shop, and WebGoat in § 5).

Reqr operates similar to black-box vulnerability scanners: it
is given an entry point URL and optionally valid login credentials

and the login URL. Reqr uses the Node.js library Puppeteer
(an API used to control Chromium) to simulate user actions
and capture requests [29]. After Reqr starts, it will login to the
web application (if required) and load the entry point. Once a
page is loaded, Reqr statically analyzes the rendered HTML to
identify the HTML elements that create HTTP requests or HTTP
parameters, such as a, form, input, select, and textarea. Next,
Reqr listens for HTTP requests while simulating user events (e.g.,
mouse clicks, entering values into form fields, and scrolling the
page) both systematically and randomly. Reqr systematically
fires the events by targeting every HTML element that accepts
user events. In addition, Reqr randomly fires user input events
(e.g., clicks, form fills, scrolling, and typing) using the Gremlins
testing tool [30].

When Reqr completes, it creates a file containing all the
request information. Witcher uses the request information to
create the fuzzer’s seeds and to build the fuzzer’s dictionary.

4.1.3. Request Harnesses. Witcher’s HTTP harnesses translates
fuzzer generated inputs into valid requests. Due to the different
execution models, Witcher has a different harness design for
PHP and CGI binaries than it does for Python, Node.js, Java,
and QEMU-based binaries. For PHP and CGI web applications,
Witcher translates from the fuzzer input format into a CGI request.
For Python, Node.js, Java, and QEMU-based binaries Witcher
translates fuzzer’s input into an HTTP request (see § 2.1).
CGI Harness. PHP (via php-cgi) and CGI binaries use the same
harness because both rely on a CGI request and the invoked
endpoint runs to completion once invoked. For PHP and CGI
binaries, the HTTP harness uses LD_PRELOAD to create a
fork server that starts the interpreter or the binary just before it
processes the input. The harness receives each new input from the
fuzzer, translates the input into a CGI request, and then transmits
the request into a newly forked process.
HTTP Request Harness. Witcher fuzzes the other interpreted
languages and the QEMU-based web applications through their
associated web server by leveraging an HTTP request harness.
The HTTP request harness decouples the fuzzer from the targeted
platform and enables the fuzzer to work on applications that
it does not automatically support. For example, AFL cannot
fuzz a Node.js web application that uses Express because the
application runs indefinitely waiting for new requests and is
multi-threaded.

The HTTP request harness creates a bridge between AFL
and the web server to leverage the web server’s interface to
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the web application. The HTTP harness includes its own fork
server that increases the request submission throughput. The
harness receives input from the fuzzer, it translates this input into
a well-formed HTTP request, and sends the HTTP request to the
web server. Last, when Fault Escalator detects a SQL statement
or shell command that causes a syntax error, Fault Escalator
sends a segmentation fault to the HTTP harness process, which
the fuzzer automatically detects.

Translating Fuzzing Input into a Request. Both the CGI
Harness and the HTTP Request Harness act as translators between
the fuzzer and the web application. Witcher automatically creates
seeds for the fuzzer that follow a null-terminator delimited format.
The seeds include fields for cookies, query parameters, post
variables, and other header values. As a result, the fuzzer creates
test cases based on the format, which the harness then translates
into the appropriate request type.

In addition to handling the fuzzer’s input, the harness sets a
few other parameters for the output request. The harness keeps the
request path static for each instance of the fuzzer, which means
Witcher fuzzes a single URL at a time. In addition, the harness
adds any session cookies, query variables, or post variables that
are necessary for the web application to operate correctly. For
example, most of the endpoints in the OpenEMR web application
require a valid login session. As a result, prior to invoking the
fuzzer, Witcher inputs valid login credentials to generate a valid
session cookie, which the harness includes in every request.

4.2. Augmenting Fuzzing for Web Injection
Vulnerabilities

4.2.1. Coverage Accountant. Witcher’s Coverage Accountant
(inside the Interpreter block on the right-side of Figure 1) provides
byte-code execution coverage information to the fuzzer for the
interpreted languages PHP, JavaScript, Python, and Java as
well as web applications that can be executed using QEMU-
user or QEMU-system. Witcher uses the Coverage Account
because trying to fuzz a web application by instrumenting the
interpreter results in a significant amount of noise. For example,
when we used AFL’s standard approach of instrumenting the
interpreter for a simple web page that had six unique paths the
fuzzer reported that it found over a thousand unique paths. The
discrepancy occurs because by instrumenting the interpreter the
fuzzer focuses on test cases that alter the interpreter’s execution
paths; however, changing the interpreter’s execution path does not
usually translate to the target web application. Even though many
of the paths identified by the fuzzer do not provide additional
coverage of the web application code, the fuzzer stores and
attempts to mutate each of the test cases because they changed the
execution of the interpreter. The increased number of equivalent
test cases prevents the fuzzer from making meaningful progress
exploring the target web application. Therefore, Witcher created
the Coverage Accountant to more accurately capture the web
application’s execution paths.

Interpreter Instrumentation. Despite the different interpreter
architectures, the instrumentation of the byte-code is similar
between them. The interpreter reads the source file and translates

the code into byte-code instructions. Next, the interpreter executes
the instruction.

During the execution of an instruction, the augmented
interpreter calls Witcher’s code coverage library function.
Witcher’s library function receives the line number, opcode, and
parameters of the current byte-code instruction. Witcher then
updates the fuzzer’s coverage information using the line number
and opcode of the current and prior instructions.

Witcher’s interpreter instrumentation targets the web ap-
plication. In Listing 1, the code has six visible paths plus
several latent paths that occur within the functions $_GET(),
mysqli_query(), and uniqid(). Thus, with Witcher’s PHP in-
strumentation the fuzzer will find six paths it deems unique.
CGI Binaries. In addition to interpreted languages, Witcher
supports fuzzing CGI binaries. For CGI binaries, Witcher
uses AFL’s instrumentation when the binary’s source code
is available. When its source code is unavailable, Witcher’s
fuzzer uses dynamic instrumentation via QEMU [31]. Although
the QEMU-user modifications for instrumentation are already
included with AFL, Witcher makes additional modifications
to QEMU-user to enable fault escalation. For QEMU-system,
Witcher’s modifications target the data structures used to store
QEMU’s intermediate language, which is processed similarly
to the byte-code used by the interpreted languages.
Beyond AFL. Witcher uses AFL as the coverage guided
mutational fuzzer; however, the Witcher framework can
incorporate more advanced fuzzers. If a new fuzzer uses an
improved technique for instrumentation, such as PTrix [32],
or mutation, such as Tfuzz [33] or AFL++ [34], then Witcher
can incorporate the fuzzing tool while still employing the
web crawling and fault escalation to detect a wider set of
vulnerabilities than either of those tools could do alone.

4.2.2. HTTP-specific Input Mutations. We modified AFL by
adding two new mutation stages that focus on manipulating HTTP
parameters. The purpose of these mutations is to inject parameters
into the inputs more quickly than standard AFL and to share/swap
values at the variable level instead of treating the parameters as
a mere sequence of unstructured bytes. In effect, the mutators
reduce and modulate AFL’s entropy in a way that is more
consistent with the syntax and semantics of web applications.
HTTP Parameter Mutator. The HTTP Parameter Mutator
cross-pollinates unique parameter name and values between
the interesting test cases stored in the fuzzer’s queue. Witcher
fuzzes one URL endpoint at a time; however, an interdependency
often exists between the variables of different test cases. By
cross-pollinating the parameters, the fuzzer provides targeted
test cases that are more likely to trigger new execution paths than
random byte mutations. For example, in Listing 1 if a test case
contains act=a and another contains ptype=dog_red, then by
combining them, the fuzzer would reach the vulnerable code.
HTTP Dictionary Mutator. The HTTP dictionary mutator
decreases the number of executions necessary to pair the current
input with the variables in the dictionary. Many endpoints serve
multiple purposes, as a result, an endpoint may have several
requests that use different HTTP variables. For a given endpoint,
Witcher places all the HTTP variables discovered by Reqr into
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the fuzzing dictionary. The HTTP dictionary mutator takes
advantage of the contextually similar variables by mixing and
matching them with the current request. The HTTP dictionary
mutator does this by randomly selecting one to ten variables from
the dictionary and adds them to the current test case.

5. Evaluation

In this section, we aim to answer the following research
questions through the evaluation of Witcher:
RQ1. How effective are Witcher’s augmentation techniques

at exploring the web application and identifying
vulnerabilities? Do both augmentation techniques
contribute to fuzzing (§ 5.1)?

RQ2. How effective is Witcher at identifying vulnerabilities
in web applications (§ 5.2)?

RQ3. How does Witcher’s code coverage and vulnerability dis-
covery compare to a commercial black-box vulnerability
scanner and cutting-edge vulnerability scanners (§ 5.3)?

5.1. Witcher Augmentation Techniques Evaluation

To better understand the impact of Witcher’s augmentation
features on web application fuzzing, we evaluate Witcher with
different configurations and test them on two data samples. The
first is a microtest using 10 self-created PHP scripts, and the
second is OpenEMR, a real-world web application.

Recall that we designed two fuzzing augmentation techniques:
coverage accountant and HTTP mutator. In this experiment, we
used Witcher with four different configurations:
AFLR does not have coverage accountant or HTTP mutator.

This configuration is meant to be a baseline against Witcher
with fuzzing augmentation.

AFLHR has HTTP mutation yet does not have coverage
accountant.

WiCR has coverage accountant yet does not have HTTP
mutator.

WiCHR has both coverage accountant and HTTP mutator.

5.1.1. Microtest Evaluations. In the microtest evaluation, we ran
each configuration on a set of ten PHP scripts designed to test the
capabilities of Witcher. Each of the scripts includes a single path
that reaches an injection vulnerability. The evaluation of a script
with a particular configuration ran until either the target injection
was reached or four hours elapsed, whichever occurred first.

The dictionary simulated the output generated by Reqr and
it included the parameters used by each of the scripts, plus 100
unrelated parameters to simulate unused variables. Each script
and configuration were run five times to stabilize the results.

Each of the microtests targeted the functionality of Witcher’s
components or added additional difficulty. The first set of scripts
(post-2, post-5, post-10, get-5, and cookie-5) follow the same
general format that tests Witcher’s ability to input the type of vari-
able under test. For example, post-2 (Listing 2 in the Appendix)
executes a SQL statement that directly concatenates the value
returned by $_GET['vul'] (i.e., an unsanitized value) when the
functions isset($_POST['nv1']) and isset($_POST['nv2'])

both return true. As a result to pass the test, the fuzzer must
provide the post variables nv1 and nv2 and the URL parameter
vul that contains a value that will trigger a SQL parsing error.

The next set of scripts test Witcher’s ability to provide specific
variable and values. To reach the vulnerable SQL statement in
select-3, the variables and values were provided in the dictionary
(as though they were harvested by the crawler) because they
were provided in the user interface via the <select> tags.
equals-1, equals-3, and loop-10 tests, the values necessary to
reach the vulnerable SQL are not provided in the user interface;
thus, the fuzzer, must discover the values. equals-1 (Listing 3
in the Appendix) executes the vulnerable SQL statement that
concatenates the unsanitized input variable $_GET['vul'] when
$_GET['nv1'] == "YYYY", the necessary value YYYY was
not provided in the dictionary. Similarly, in equals-3, the fuzzer
must discover three unknown values to reach the vulnerable
statement. loop-10 (Listing 4 in the Appendix) evaluates the input
using a for loop to perform a byte-by-byte comparison instead of
using == to compare the entire string, which provides the fuzzer
some breadcrumbs to discover the unknown value and reach the
vulnerable statement. The last test is similar to equals-1 except the
fuzzer is provided the necessary value but not the variable name.
findvar-1 (Listing 5 in the Appendix) executes the vulnerable
statement when isset($_POST['ao3']); however, a03 is not
provided in the seeds or dictionary. Excerpts from some of the
microtest scripts are available in the appendix. Table 1 shows the
overall results for the microtests. Based on the result, we see that
AFLR failed to find any of vulnerabilities. It performed poorly
because the additional noise from placing the instrumentation in
the interpreter greatly reduced the number of cycles through all
inputs, which limited the number of dictionary values it explored.

On the other hand, WiCHR performed the best. WiCHR
reached the vulnerability a total of 34 times. However, WiCHR
was unable to find the vulnerability in 3 of the looping tests
because AFL gives less precedence to coverage that contains
repeated instructions. Therefore, both augmentation techniques
are helpful to increase the effectiveness of web vulnerability
discovery, and thus Witcher will include the two techniques in
subsequent evaluations.

We used the Mann Whitney U-test to verify that the
differences between the configurations were statistically
significant [35]. Because we opted to run until first crash or
timeout, we used the sum of elapsed time per trial to calculate
the differences between the configurations. The WiCHR
configuration took the least amount of time to run on every
trial and the improvement versus the other configurations was
statistically significant under the Mann Whitney U-test.

5.1.2. OpenEMR Evaluations. To evaluate the performance
of Witcher’s configurations on a real-world web application, we
performed a second comparative evaluation using OpenEMR
version 5.0.1.7. We used Reqr to identify the application’s URLs
and input variables.

Next, Witcher fuzzed each of the URLs in five independent
trials using each configuration. We excluded AFLR because
of its poor performance in the microtest evaluation; thus, we
evaluated the remaining 3 configurations AFLHR, WiCR, and
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TABLE 1: Microtest Comparative Evaluation Results. The values
represent the number of crashes reached after five trials that were up
to four-hours in duration.

Microtest AFLR AFLHR WiCR WiCHR

post-2 0 5 5 5
post-5 0 5 5 5
post-10 0 2 5 5
get-5 0 4 5 5

cookie-5 0 4 5 5
equal-1 0 0 1 2
equal-3 0 0 0 0

findvar-1 0 0 0 0
loop-10 0 0 0 2
select-3 0 4 5 5

WiCHR. We initialized the database and sessions at the start of
each trial to aid consistency from run-to-run.

To perform the evaluation, we gathered PHP code coverage
data to use in the Mann-Whitney test. We used Xdebug, a PHP
extension, to extract PHP code coverage information [36]. Next,
we calculated the total lines visited for all scripts using a particular
configuration and trial. With the total lines visited, we then
compared the configurations using the results from each trial.

Table 7 in the Appendix shows the results: the total lines
of code reached using each of the different configurations in
each trial. WiCHR consistently executed the most lines of
code followed by WiCR and then AFLHR. The differences in
performance between the feature sets was statistically significant:
the Mann-Whitney U-Test resulted in a p-value of 0.01208.

Table 7 also shows the vulnerabilities discovered for each
trial and configuration. All the feature sets found vulnerabilities
on each trial; however, both WiCR and WiCHR performed
significantly better than AFLHR. WiCHR identified the most
vulnerabilities on each trial.

5.2. Witcher Evaluation

Based on the results of the feature comparison shown in § 5.1,
we selected the WiCHR configuration to compare Witcher with
other web scanning tools. We used as an evaluation dataset a
diverse set of web applications written in different languages and
running on different platforms: some that have known vulnerabili-
ties and some that were up-to-date with no known injection vulner-
abilities. In this evaluation, we manually confirmed each vulnera-
bility by verifying whether the vulnerability was exploitable or not.
Excluding the interesting bugs, all the remaining command and
SQL injection vulnerabilities were severe because they give an
attacker the capability to destroy, alter, and exfiltrate data [37]. For
the command injection vulnerabilities, we verified the application
executed an arbitrary shell command. For SQL injections, we
automatically exploited the vulnerabilities by providing the crash
information from Witcher to SQLMap, which gained full control
over the database or could execute arbitrary SQL functions.

For the known vulnerable applications we used a set of eight
PHP applications, five firmware images (binaries where the
source is likely written in C, and the platform is ARM, MIPSEL,
and MIPSEB), one Java, one Python, and one Node.js application
with a combined total of 36 known vulnerabilities. We searched

TABLE 2: The known vulnerabilities in each web application, the amount
that Witcher found, missed, and previously unknown vulnerabilities that
Witcher discovered. ∗Witcher found one input where the user controls
a parameter to execve, however we could not determine if it was
exploitable so we consider this a bug rather than a vulnerability (as
discussed in § 4.1.1).

Application
Description

Known Vulnerabilities Unknown Vulnerabilities
Existing Found Missed Found

Doctor Appt. Sys. 1 1 0 3
Hosp. Mgmt. 5 5 0 43
Login Mgmt. 1 1 0 5
OpenEMR 5 1 4 5
rConfig 2 0 2 11
WackoPicko 3 2 1 0
D-Link 645 1 0 1 0∗

D-Link 823G 1 1 0 0
D-Link 823G 1 1 0 0
D-Link 825 1 0 1 0
Tenda AC9 1 0 1 0
FlaskBB 0 0 0 0
Juice Shop 2 2 0 0
osCommerce 0 0 0 0
phpBB 0 0 0 0
Threadded 0 0 0 0
WebGoat 12 9 3 0

Total 36 23 13 67

for public CVEs of SQL injection and command injection
vulnerabilities that had working exploits (so that we could verify
the existence of the vulnerability), and this resulted in: Doctor
Appointment, Login Management, Hospital Management, and
rConfig. We selected WackoPicko, OpenEMR, and Juice Shop
because of their known vulnerabilities and use in prior research
(see Table 10 in the appendix for prior work that used the same
web applications for their evaluation).

We also selected five firmware targets to demonstrate
Witcher’s ability to fuzz on non-interpreted web applications.
We chose D-Link’s 825, 823G version 1.0.2B03, 823G version
1.0.2B05, and 645 as well as the Tenda AC9 because the
firmware’s web server runs in the QEMU emulator, they each
have known CVEs, and their CVEs included working exploit
scripts. Table 6 shows the known vulnerabilities in all the
applications, along with the CVE number (if known) and the
vulnerability type.

We also selected up to date versions of web applications
used in the evaluation of prior work to ensure that Witcher would
fuzz the latest versions of web applications. In particular, we
choose phpBB, osCommerce, and Wordpress, each of which
were evaluated in four or more prior publications, and we also
added Thredded, a Ruby on Rails web application.

The name of the 18 web applications used in this evaluation
are summarized in Table 10 in the Appendix, along with the
language or platform of the web application, the release date of
the version of the web application tested if known (the oldest was
released in 2014), the version, the number of stars on GitHub for
the web application (as an estimate of the popularity of the web
application), the number of Google results for a custom Google
Dork (link to dork given in reference) if the web application’s
source is not on GitHub (as another way to estimate real-world
usage), the lines of code of the web application, and if this web
application was used in prior research.
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To run this evaluation, we created Docker containers for
each of the web applications, started the web application, and
ran Witcher. Witcher’s configuration included the entry URL,
identification of the login page, the associated credentials, and a
selector for the form field. We limited Witcher’s crawler to run for
four hours, while we fuzzed each URL with two or more input
variables for 20 minutes, As a result, the total run time varied
depending on the number of endpoints identified by the crawler.

The overview of the results for this evaluation are shown in
Table 2. Witcher successfully crawled and fuzzed all of the web ap-
plications, ultimately finding a total of 90 unique vulnerabilities of
which 67 were previously unknown. All discovered vulnerabilities
were from web applications that had known vulnerabilities (i.e.,
Witcher did not discover previously unknown vulnerabilities in the
latest versions of Thredded, phpBB, osCommerce, or Wordpress).

Witcher discovered 23 of the 36 (63.9%) known vulnerabili-
ties; however, Witcher missed 13 (36.1%) vulnerabilities. Table 6
shows the detailed results of exactly which known vulnerabilities
were found or missed, along with a brief description of why. In
particular, eight vulnerabilities were missed because the crawler
was unable to find the URL. Some URLs were not discovered by
the crawler because the application required a specific series of
steps, such as selecting a patient in OpenEMR (this is the known
problem of exploring stateful web application [20], [14]). The
crawler also missed URLs when the URL was not included in the
web application’s user interface, such as in the case of a backdoor
URL in the Tenda AC9 firmware. In the WebGoat application,
the crawler missed two vulnerabilities due to a bug in the
implementation that caused the webserver to unexpectedly crash
and another because the HTTP harness does not currently support
the HTTP PUT method. It is common for dynamic analysis tools
to have a higher false negative rate; nevertheless Witcher’s false
negative rate of 36.1% is lower than the rates reported in other
publications with 47% [38] and 60% [21]. Although Witcher
did not find any memory corruption vulnerabilities during the
evaluation, Witcher can detect them because a memory corruption
vulnerability will often result in a segmentation fault.

As shown in Table 2, Witcher found 67 previously unknown
vulnerabilities (65 SQL and 2 command injections). While we
plan to responsibly disclosing the unique vulnerabilities that
are still relevant and undiscovered, we have already received
unpublished CVEs for the OpenEMR SQL vulnerabilities:
CVE-2020-11754, CVE-2020-11755, CVE-2020-11756, and
CVE-2020-11757.

In addition to the vulnerabilities that Witcher reported,
Witcher reported two false positives and three bugs. However,
the bugs were interesting because they demonstrate the potential
of using high-entropy input for testing web applications.

5.3. Grey-box and black-box comparison

Now that we evaluated the effectiveness of Witcher at iden-
tifying vulnerabilities in web application in § 5.2, we compare
Witcher, a grey-box web application vulnerability fuzzer, against
the state-of-the-art commercial black-box web application vulner-
ability scanner Burp [5], the data-driven web application crawler
Black Widow [14], and the recently published grey-box crawler
and fuzzer WebFuzz [10]. We choose the Black Widow and

TABLE 3: Results of vulnerabilities discovered Burp and Witcher: the
number of vulnerabilities found by Burp (solo), BurpPlus Witcher, and
Witcher. Number in () indicates the unique vulnerabilities found by this
configuration.

Application Burp (solo) BurpPlus Witcher Witcher

Doctor Appt. Sys. 2 (0) 3 (0) 3 (0)
Hosp. Mgmt. 13 (0) 13 (0) 43 (30)
Login Mgmt. 1 (0) 1 (0) 6 (5)
OpenEMR 0 (0) 0 (0) 5 (5)
osCommerce 0 (0) 0 (0) 0 (0)
phpBB 0 (0) 0 (0) 0 (0)
rConfig 0 (0) 0 (0) 11 (11)
WackoPicko 1 (0) 1 (0) 2 (1)
Wordpress 0 (0) 0 (0) 0 (0)

17 (0) 18 (0) 70 (52)

WebFuzz scanners because of their recency and performance. For
example, Black Widow outperformed six other open-source web-
vulnerability scanners (Arachni [39], Enemy of the State [40],
Skipfish [41], jÄk [42], w3af [43], and ZAP [8]). Although we
had hoped to compare Witcher’s NodeJS fuzzing against Back-
REST, the authors were unable to share the tool due to proprietary
concerns [9]. We limited the evaluations to nine of the applications
(shown in Table 10) that were written in PHP, so that we could
collect code coverage using the method described in § 5.1.2.

Burp Evaluation. To compare our approach with Burp,
we evaluate how much code of the target web application is
executed and how many vulnerabilities are discovered. Because
Burp has its own crawling components, we compare against
Burp in two different configurations: (1) Burp (solo) with no
changes, where Burp crawls the web application itself, and (2)
BurpPlus Witcher, where we provide Burp with the requests
derived from Witcher’s crawler. Therefore, the comparison of the
results between BurpPlus Witcher and Witcher will not be related
to the differences between the crawlers, but to the differences
in input generated for the applications.

We configured Burp’s scan in the same way for both Burp
(solo) and BurpPlus Witcher. When we configured each scan, we
chose the built-in configuration for the most complete crawl and
the maximum audit coverage, and the most complete crawl was
limited to five hours by default. Burp’s audit (i.e., finding vulner-
abilities) did not have a timeout option and ran until completion.

One of the differences between Burp and Witcher is that
Burp rotates URLs and does not focus on a single target URL
at a time, instead, it moves through all the URLs multiple times,
which increases the likelihood of discovering new parts of a
web application due to the state changes caused by another page.
However, Witcher focuses on a single page at a time, which
means it is less likely to trigger multi-page states.

We summarized the results of this experiment in in Table 4
and Figure 2. In the code coverage results, Witcher executed
more lines of code in every application over Burp (solo) and
BurpPlus Witcher. Witcher increased code coverage by more than
100% for four of the applications. One surprising result is the
phpBB testcase, where the code coverage for BurpPlus Witcher
was 52.3% worse than Burp (solo). This was the only experiment
where BurpPlus Witcher reached the crawling timeout threshold.
As a result, BurpPlus Witcher had fewer end points to investigate,
which resulted in fewer lines covered.
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Figure 2: Each column in the stacked bar chart compares the lines found
to another tool in an application. Each bar shows a percentage of the
total lines found for the tool.

As shown in the vulnerability results in Table 3, Witcher
discovered 70 vulnerabilities of which 52 were unique between
the three configurations. Witcher found the most vulnerabilities
for six of the nine applications.

Black Widow and WebFuzz Evaluation. For the Black
Widow and WebFuzz evaluations, we only compare the unique
lines of code executed because Black Widow and WebFuzz target
XSS vulnerabilities while Witcher targets SQL and command
injection vulnerabilities. We seeded WebFuzz with the HTTP
requests discovered by Witcher in the crawling stage to focus the
evaluation on the fuzzers. Due to the nature of Black Widow’s
crawler, we were unable to seed Black Widow with the same
seeds. However, we did add a username and password parameter
so that Black Widow would use an existing account.

Black Widow and WebFuzz interweave the execution of
different pages while testing a web application. By interweaving
execution, the tools may trigger and fuzz new application states
that rely on the interdependence between two web pages. For
example, the tool may add an item to a cart on the the product
page and checkout on the shopping cart page. Currently, Witcher
focuses on a single page at a time and is less likely trigger
these interdependent states. In addition, Black Widow uses state
monitoring to discover new application states.

Witcher’s speed and mutation strategy outperformed the other
scanners’ URL interleaving and state monitoring. As shown
in Table 4 and Figure 2, Witcher outperformed Black Widow
and WebFuzz by finding more unique lines of code on all the
applications except WackoPicko. On WackoPicko, the tools found
additional lines of code in the shopping cart functionality. By
interweaving the crawling and fuzzing, the tools were able to
induce a new state in the shopping cart that exposed an otherwise
hidden URL.

Vulnerability Target Bias. In the next evaluation, we
tested whether different vulnerability targets may introduce
result altering bias into the evaluation that unfairly benefited
Witcher in the prior code coverage evaluation. Black Widow and
WebFuzz target XSS vulnerabilities; whereas, Witcher targets
SQL and command injection vulnerabilities. Black Widow
and WebFuzz form valid pre-defined XSS payloads to detect

an XSS vulnerability. Although Witcher does not generate an
exploit payload—it inputs random bytes and swaps variables
that will likely trigger a fault escalation—we cannot guarantee
that implicit command and SQL injection driven assumptions
did not influence Witcher. As a result, these different payloads
and assumptions may introduce coverage bias, which makes the
comparison between the tools less equivalent.

To evaluate the bias, we took an approach inspired by the
comparison in Enemy of the State [20] where they added the w3af
testing component to the state-aware-crawler to control for the
vulnerability detection. In our evaluation, we simulated the same
control by combining Black Widow’s and WebFuzz’s code cov-
erage with the code coverage generated by BurpPlus (with only
SQL auditing enabled and loading Burp with Witcher’s URLs).

Combining BurpPlus’s SQL only results with Black Widow
and WebFuzz did not alter the outcome of any comparison to
Witcher making it less likely that the different vulnerability
targets unfairly benefited Witcher. In Table 5, BurpPlus added
lines covered to most of the web applications for both scanners.
However, the additional lines did not change the outcome of the
comparisons; moreover, the percent increase (amount of change
/ total lines covered) was less than 3.3% for all the applications
(see Table 11). Thus, for the chosen web applications, it is
unlikely that a vulnerability target bias impacted the results.

Performance. To understand the cost in terms of requests per
second, we compared the number of requests per second made
by Witcher, WebFuzz, Black Widow, and Burp. In the evaluation,
we executed Witcher (one core), Burp (max of ten concurrent
requests), WebFuzz (a single worker), and Black Widow (one
core) for eight hours on each of the PHP web applications.

Table 9 in the Appendix shows that Witcher sent the most
requests per second for every web application. Witcher averaged
142.1 requests per second while WebFuzz averaged 22.5 req/s,
Black Widow averaged 1.6 req/s, and Burp averaged 6.8 req/s.
Although Witcher outperformed the other tools in code coverage,
it issued six times the requests made by the next fastest tool;
however, the coverage was not six times better. Thus, by applying
a hybrid approach Witcher would likely improve coverage despite
the potential cost to the requests per second.

6. Discussion

Witcher’s use of fault escalation, dynamic request crawling,
request harnessing, direct instrumentation, and HTTP-specific
input mutations provides a framework for the effective application
of coverage-guided mutational fuzzing to web applications. Our
evaluation showed the effectiveness of the Witcher components,
the ability to identify known and previously unknown vulnerabili-
ties. In addition, we compared Witcher with Burp, Black Widow,
and WebFuzz. Witcher outperformed the other tools, finding
more vulnerabilities than Burp and covering more of the web
applications than Burp, Black Widow, and WebFuzz.
Grey-box versus White-box versus Black-box Scanners.
The implementation of grey-box fuzzing for web applications
requires less effort to implement than its white-box counterparts.
Witcher requires inserting a few lines of code into the target
runtime for the language. However, a white-box tool models
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TABLE 4: Results of PHP lines of code coverage between Witcher, Burp, BurpPlus, Black Widow, and WebFuzz. Each scanner is compared against
Witcher. The W \B column shows the unique lines discovered by Witcher. The W∩B shows the lines found by Witcher and the other scanner. The
B\W column shows the unique lines found by the other tool. If Witcher has the most unique lines, the value is green. If the other tool has the most
unique lines then the value is in orange .

Burp (solo) BurpPlus Witcher Black Widow WebFuzz
Application W \B W∩B B\W W \B W∩B B\W W \B W∩B B\W W \B W∩B B\W

Doctor Appt. Sys. 34 386 6 34 386 13 209 211 43 74 1,067 10
Hospital Mgmt 971 471 8 1,021 421 8 92 1,350 24 164 3,162 54
Login Mgmt 104 64 0 53 115 3 37 131 4 27 492 0
OpenEMR 32,878 7,859 7 31,428 9,309 40 25,273 15,464 2583 25,237 107,917 17,852
osCommerce 5,733 4,024 90 3,890 5,867 277 2,657 7,100 798 4,147 22,635 3,622
phpBB 3,148 22,183 851 14,482 10,849 1001 3,210 22,121 879 15,483 35,480 6,544
rConfig 2,960 592 15 2,263 1,289 15 458 3,094 239 301 2,259 30
WackoPicko 343 399 10 258 484 10 72 670 283 50 2,415 392
Wordpress 37,308 15,987 50 27,823 25,472 1723 7,036 46,259 6482 41,239 109,076 5,935

TABLE 5: This table compares the increase in code coverage introduced
by combining BurpPlus’s code coverage data to Black Widow’s and
WebFuzz’s code coverage. It shows the unique lines found by Witcher
and the scanner in the first two columns. In the third column, it shows
the increase in the scanner’s coverage over the results show in Table 4.
A more detailed table is available in the Appendix at Table 11

Witcher v. Black Widow Witcher v. WebFuzz
Application W \BW+ (BW+)\W Inc. W \WF+ (WF+)\W Inc.

Doctor Appt. 206 43 0 74 10 0
Hosp. Mgmt. 88 24 0 71 60 6
Login 19 7 3 3 0 0
OpenEMR 25,117 2,606 23 22,473 19,915 2,063
OSCommerce 2,497 863 65 3,833 3,622 0
phpBB 2,967 1,159 280 15,133 7,508 964
rConfig 426 254 15 104 62 32
WackoPicko 66 285 2 50 407 15
Wordpress 6,966 6,733 251 37,401 10,365 4,430

the semantics of the language. The semantics differ for each
language; thus, significant effort is required to initially implement
a semantic-driven white-box approach to a different language.
For instance, Pixy [44] did not support object-oriented features
of PHP, which limits its applicability to modern PHP. Moreover,
white-box tools often fail when analyzing real-world code.
However, we tested Witcher and grey-box fuzzing using multiple
real-world targets, languages, and architectures. Although
black-box vulnerability scanners are typically language agnostic,
grey-box fuzzers out-performed a commercial black-box tool and
two state-of-the-art vulnerability scanners.

6.1. Limitations

The current Witcher prototype is limited to discovering SQL
injection and command injection vulnerabilities. While these
two vulnerability classes represent high-severity vulnerabilities,
there are other web vulnerabilities such as cross-site scripting,
path traversal, local file inclusion, or remote code evaluation that
Witcher does not currently detect.

Another limitation of Witcher is that it can only detect
reflected injection vulnerabilities—that is, injection vulnerabilities
where the untrusted user input flows unsanitized to a sensitive
sink during one HTTP request. This is in contrast to second-order
vulnerabilities, such as stored SQL injection, where the untrusted
user input is safely stored by the web application on the initial
HTTP request, where it finally flows unsanitized to a sensitive

sink while processing a subsequent HTTP request. Although
Witcher might be able to detect the vulnerability using Fault
Escalator, it would not be able to reason about what input actually
caused the vulnerability.

A related limitation is that Witcher does not reason about web
application state. A key limitation of the Witcher prototype is that
it fuzzes one URL at a time, which does not allow it to reason
about or understand multi-state actions in the web application.
However, Witcher is able to induce some application states be-
tween requests because the web application’s database maintains
state. Perhaps the techniques proposed in prior work to understand
web application state [20], [14] could be applied to Witcher.

6.2. Future Work

While Witcher worked well in the evaluations, we see several
potential improvements. Witcher could benefit more automation
of the initial setup and configuration. Witcher would also benefit
from simultaneous crawling and fuzzing that shares results and
interweaves the execution of different URLs.

Witcher can be improved to detect other types of vulnerabili-
ties. Witcher could be augmented to detect local file inclusion and
path traversal vulnerabilities by (1) creating a honeypot directory
(witchers-honey/) in each directory of the web application and
(2) adding a detector that escalates when a new file is detected in
the honeypot directory. Witcher could include XSS vulnerability
detection likely at the cost of performance by using a JavaScript
engine to render and detect the XSS using WebFuzz’s technique.

7. Related Work

Recently, three grey-box fuzzing tools have emerged in the
literature BackREST [9], WebFuzz [10], and Cefuzz [45]. Witcher
is distinguishable from the tools because Witcher supports
multiple languages, while BackREST only supports Node.js
and WebFuzz and Cefuzz only support PHP. With respect to
BackREST, Witcher is more robust because Witcher handles full
web applications whereas BackREST focuses on exercising REST
APIs. In addition, Witcher is open source; however, BackREST
and Cefuzz are closed source and BackREST is unavailable
for testing or evaluation. Witcher also differs from WebFuzz
because Witcher uses a compiled fuzzer to generate inputs
whereas WebFuzz’s fuzzer is written in Python, which improves
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the requests per second Witcher can make. Next, Witcher tracks
execution by adding the instrumentation to the interpreter;
whereas, WebFuzz directly modifies the web application’s scripts
and nearly doubles the size of the scripts. Lastly, Witcher targets
command and SQL injection vulnerabilities whereas BackREST
and WebFuzz target Cross-site Scripting vulnerabilities and
Cefuzz targets remote code execution vulnerabilities.

Several black-box fuzzers exists for fuzzing web applications
such as Burp [5], Acunetix Web Vulnerability Scanner [6], IBM
AppScan [7], OWASP Zap [8], and Skipfish [41] Arachni [39],
Enemy of the State [40], jÄk [42], w3af [43], and Black
Widow [14]. Each the the scanners detect injection and other
common web vulnerabilities [46]. Most of the tools "fuzz" using
predefined heuristics or user-defined rules [47]. However, unlike
the black-box tools, Witcher relies execution instrumentation
to guide the input generation and fault escalation to detect an
injection vulnerability.

AFL CGI Wrapper enables the fuzzing of CGI binaries by
receiving input via standard input and translating it into a CGI
request [48]. Although the initial inspiration of Witcher’s CGI
harness came from the AFL CGI Wrapper, it only detects memory
corruption vulnerabilities does not identify injection vulnerabil-
ities and it lacks the input generation capabilities of Witcher.

The tool µ4SQLi automatically produces inputs that lead to
harmful SQL statements and bypasses application firewalls [49].
µ4SQLi starts with legitimate input and mutates the values using
a predefined group of mutation operators that are meant to build
new types of SQL injection payloads. Similar to Witcher, µ4SQLi
uses a database proxy to monitor the network traffic between the
database and the web server so that it detects whether the SQL
statement is harmful. µ4SQLi differs from Witcher because it
does not rely on any execution instrumentation to guide input gen-
eration and it does not detect command injection vulnerabilities.

KameleonFuzz is a black-box web application fuzzer that de-
tects XSS vulnerabilities [50]. KameleonFuzz attempts to uses an
attack grammar and variable mutations to generate XSS payloads
along with valid input, which it then submits to the site, and then
detects whether the payload landed. It guides the mutations based
on a fit score, which is calculated after the input is submitted.
KamelonFuzz differs from Witcher because it does not use any
execution information to guide the input generation phase and it
does not use detect SQL or command injection vulnerabilities.

RESTler and Pythia automatically test REST APIs that have
interfaces defined using Sparrow. RESTler uses grammar-based
fuzzing and static analysis of API specifications to automatically
test REST APIs [47]. Pythia, which builds on RESTler, adds
coverage-guided fuzzing and learning-based mutations [51].
However, these tools focus bugs instead of vulnerabilities and
only work on Sparrow documented REST apis, unlike Witcher,
which works on web applications and detects SQL and command
injection vulnerabilities.

Another recent tool, HYDRA, uses user weighting and output
monitoring to guide the targeted generation of injection pay-
loads [52]. HYDRA uses context changes to detect the injection
vulnerabilities. However, Witcher uses fault escalation to detect in-
jection vulnerabilities. In addition, HYDRA requires more interac-
tion with the user for initialization of inputs and context weighting.

SRFuzzer fuzzes the web interface of router-based IoT
devices to detect memory corruption and command injection
vulnerabilities. SRFuzzer uses a browser-based crawler to gather
the HTTP variables. SRFuzzer then fuzzes the variables and
monitors by testing the device’s responsiveness and listening for
reverse connections made by crafted command injection payloads.

Although not the primary contribution of Witcher, its device
fuzzing offers features not included in SRFuzzer. SRFuzzer and
Witcher use similar techniques to identify the HTTP variables.
However, Witcher detects the vulnerability from inside the device
(which means that the vulnerability trigger does not need to be a
syntactically correct command injection). Moreover, SRFuzzer’s
scaling is limited by the use of the physical device; while Witcher
uses an emulated version of the firmware and scales to fuzz in
parallel. Finally, Witcher uses instrumentation of the binary to
guide fuzzing, while SRFuzzer does not.

Rampart detects denial-of-service attacks using a PHP plugin
to measure the execution time of user-created functions to detect
anomalous execution performance, which indicates a denial-of-
service attack [53]. Witcher’s instruction instrumentation is more
fine-grained than user-created functions because user-created
functions often contain multiple lines of code. Thus, Witcher
provides the fuzzer with additional information to guide its
analysis than produced by Rampart.

Eriksson et al. created the vulnerability scanner Black
Widow [14]. Black Widow uses navigation modeling, traversing,
and inter-state dependencies to scan web applications. Witcher
uses fault escalation to find SQL and command injection
vulnerabilities, but Black Widow is limited to XSS vulnerabilities.
Based on the evaluation results, the two approach while producing
similar results also seem to activate different portions of the code.
Thus, integrating the Witcher and Black Widow approaches will
likely result in a more effective tool.

Several fuzzers exist that propose different methods for
mutating context-free grammars or other types of structured
data [54], [55], [56], [57], [58]. We plan to investigate their
performance on web applications in future work.

8. Conclusion
In this paper, we propose Witcher, a novel web application

vulnerability discovery platform that is generalizable to web lan-
guages without hard-coded heuristics for testing inputs. Witcher is
inspired by coverage-guided mutational fuzzing. To bridge the gap
between coverage-guided mutational fuzzing and web application
vulnerabilities, we design multiple techniques in Witcher that
generate both syntactically-valid and semantically-correct inputs
and detect injection vulnerabilities. In our evaluation, we observed
that Witcher is able to find both known and unknown web vulnera-
bilities effectively. Witcher is the first step toward the development
of a web application fuzzer, as opposed to vulnerability scanners,
and we believe this approach is a promising path forward to
automatically identifying vulnerabilities in web applications.
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9. Appendix

TABLE 6: Known vulnerabilities and results from Witcher’s evaluation.

Application
Description Name Type Results Reason

Missed

OpenEMR
CVE-2019-17197 SQL Missed Crawler Missed
CVE-2019-14529 SQL Missed Crawler Missed
CVE-2019-16404 SQL Missed Crawler Missed
CVE-2018-17181 SQL Missed Crawler Missed
CVE-2018-17179 SQL Missed Crawler Missed

WackoPicko
login.php SQL Found
passcheck.php Command Found
similar.php Stored SQL Missed Failed to Recall

Doctor Appt. CVE-2020-29283 SQL Found

Login Mgmt. CVE-2020-25952 SQL Found

rConfig CVE-2019-16662 Command Missed
CVE-2019-16663 Command Missed Crawler Missed

Hosp. Mgmt. CVE-2020-5192 SQL Found

D-Link 825 CVE-2020-10213 Command Missed Crawler Missed

D-Link 823G CVE-2018-17787 Command Found

D-Link 823G CVE-2019-15530 Command Missed Did not trigger

D-Link 645 CVE-2015-2051 Command Missed Did not trigger

Tenda AC9 CVE-2018-16334 Command Missed Crawler Missed

Juice Shop login SQL Found
search SQL Found

WebGoat attack2 SQL Found
attack3 SQL Found
attack4 SQL Found
attack5a SQL Found
attack5b SQL Missed Java Inst Bug
attack8 SQL Found
attack9 SQL Found
attack10 SQL Missed Java Inst Bug
Adv/attack6a SQL Found
Adv/challenge SQL Missed PUT not Supported

TABLE 7: OpenEMR Results. This table shows the lines of code covered
and the vulnerabilities discovered for each of the five trials.

AFLHR WiCR WiCHR

Lines Vulns Lines Vulns Lines Vulns

Trial 1 23,113 2 29,723 7 30,714 8
Trial 2 23,142 2 29,082 5 30,777 8
Trial 3 23,011 1 29,543 6 30,935 9
Trial 4 23,111 2 29,105 6 30,833 8
Trial 5 23,220 3 29,160 6 30,800 8

TABLE 8: This table shows the difference between code triggered
by Witcher and WebFuzz + BurpPlus (with SQL auditing enabled).
Although it did change the results by as much as 4,000 lines of code,
the change did not change the outcome of the comparison.

Application W \(WF+) W∩(WF+) (WF+)\W Inc. % Inc.

Doctor Appt. Sys. 74 1067 10 0 0.0%
Hosp Mgmt. 71 3,255 60 6 0.2%
Login Mgmt. 3 516 0 0 0.0%
OpenEMR 22,473 109,511 19,915 2,063 1.4%
OSCommerce 3,833 22,608 3,622 0 0.0%
phpBB 15,133 35,730 7,508 964 1.7%
rConfig 104 2,456 62 32 1.2%
WackoPicko 50 2,415 407 15 0.5%
Wordpress 37,401 87,610 10,365 4,430 3.3%

TABLE 9: The requests per second of Witcher and WebFuzz on the PHP
applications used in the evaluation.

Applications Witcher WebFuzz Black Widow Burp
Req/s Req/s Req/s Req/s

Doctor Appt. Sys. 539.4 43.4 3.4 7.3
Hosp. Mgmt. Sys. 327.4 26.6 3.0 5.0
Login Mgmt. 180.9 112.2 0.9 13.3
OpenEMR 15.3 1.5 1.7 5.1
osCommerce 22.2 4.7 0.7 2.4
phpBB 14.7 1.5 0.7 1.1
rConfig 52.7 10.1 3.3 3.3
WackoPicko 101.9 2.2 0.2 23.5
Wordpress 24.4 0.1 0.5 0.1

Average 142.1 22.5 1.6 6.8

Listing 1: Example PHP code with three SQL injections that the
commercial black-box scanner Burp does not find.

1 . . .
2 <? $pid = $_GET[ ' pid ' ] ; $act = $_GET[ " act " ] ; ?>
3 <input name="pid " value="<?= $pid ?>">
4 <input name="pname" value="<?=get_name ( $pid )?>">
5 <s e l e c t name="ptype">
6 <option value="dog_red">Red Dog</option>
7 <option value="dog_grey">Grey Dog</option>
8 </se l e c t >
9 <input type="hidden " name=" act " value="a"/>

10 <?php
11 $pname = $_GET[ "pname" ] ;
12 $inp = explode ( '_ ' , $_GET[ "ptype" ] ) ;
13 $tab=$inp [ 0 ] ; $c = $inp [ 1 ] ;
14 $pid = i s s e t ( $pid ) ? $pid : uniq id ( ) ;
15 i f ( count ( $inp ) >= 2 && $act == "a" ) {
16 $pid = $conn -> rea l_escape_str ing ( $pid ) ;
17 $pname = $conn -> rea l_escape_str ing ( $pname ) ;
18 $c = $conn -> rea l_escape_str ing ( $c ) ;
19 $sq l = "INSERT into { $tab} ( id , pname , c o l o r ) " ;
20 $sq l .= " VALUES ( '{ $pid } ' , '{ $pname } ' , '{ $c } ') " ;
21 $re t = mysqli_query ( $conn , $ sq l ) ;
22 } e l s e i f ( count ( $inp ) >= 2 && $act == "u" ){ //TBD
23 i f ( get_name ( $pid ) != nu l l ){
24 $sq l = "UPDATE dog SET co l o r= '{ $c } ' " ;
25 $sq l .= "WHERE id = '{ $pid } ' " ;
26 $re t = mysqli_query ( $conn , $ sq l ) ;
27 . . .

Listing 2: Excerpt from Post-2 in the microtest. The code is simliar for
Post-5, Post-10, Cookie-5, and Get-5 scripts.

1 . . .
2 i f ( i s s e t ($_POST[ ' nv1 ' ] ) ) {
3 i f ( i s s e t ($_POST[ ' nv2 ' ] ) ) {
4 $re t=mysqli_query ( $con , "SELECT * FROM tb l
5 WHERE ID='$_GET[ ' vul ' ] ' " ) ;
6 . . .

Listing 3: Excerpt from Equals-1 microtest.
1 . . .
2 i f ($_GET[ ' nv1 ' ] == "YYYY" ) {
3 $re t=mysqli_query ( $con , "SELECT * FROM tb l
4 WHERE ID='$_GET[ ' vul ' ] ' " ) ;
5 . . .

Listing 4: Excerpt from Loop microtest.
1 . . .
2 f o r ( $ i =0; $ i < s t r l e n ( $ t e s t s t r ) ; $ i++){
3 i f ( $ i < $nv1_len ){
4 i f ( $ t e s t s t r [ $ i ] == $nv1 [ $ i ] ) {
5 } e l s e {
6 $all_match = FALSE;
7 break ;
8 }
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9 } e l s e {
10 $all_match = FALSE;
11 break ;
12 }
13 }
14 i f ( $all_match ){
15 $re t=mysqli_query ( $con , "SELECT * FROM tb l
16 WHERE ID='$_GET[ ' vul ' ] ' " ) ;
17 } . . .

Listing 5: Excerpt from FindVar microtest.
1 . . .
2 i f ( i s s e t ($_POST[ ' ao3 ' ] ) ) {
3 i f ($_POST[ ' ao3 ' ] == "add" ) {
4 $re t=mysqli_query ( $con , "SELECT * FROM tb l
5 WHERE ID='$_GET[ ' vul ' ] ' " ) ;
6 . . .
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TABLE 10: Web applications used in the evaluation.

Application Lang. or
Platform

Release
Date Ver. GitHub

Stars
Google
Results

Lines
of Code

Prior
Research

OpenEMR PHP 7 2018 5.0.1.7 1.6k ⋆ 9,443 [59], [60]

WackoPicko PHP 5 2018 1.0 265 ⋆ 2,510 [14], [61], [40], [62], [63], [64]

Doctor Appointment Booking System PHP 7 2020 1.0 n/a ≈10 [65] 3,981 -

User Login Management System PHP 7 2020 2.1 n/a ≈3 [66] 1,490 -

rConfig PHP 7 2018 3.9.2 80 ⋆ 48,405 -

Hospital Management System PHP 7 2019 4.0 n/a ≈100 [67] 9,443 -

D-Link DIR-823G C/MIPSEL 2018 1.0.3.B3 n/a 1,585,157 -

D-Link DIR-823G C/MIPSEL 2018 1.0.2.B5 n/a 1,569,829 -

D-Link DIR-645 C/ARM 2014 1.0.4.B12 n/a 465,324 -

D-Link DIR-825 C/MIPSEB 2015 1.2.10.B1 n/a 542,992 -

Tenda AC9 C/ARM 2018 15.03.05.19 n/a 982,880 -

WebGoat Java 2020 8.10 3.9k ⋆ 14,761 [50]

FlaskBB Python 2018 2.0.2 2.0k ⋆ 14,534 [68]

Juice Shop Node.js 2020 8.1.0 242 ⋆ 26,221 [62], [69]

Thredded Ruby/Rails 2021 16.16 1.3k ⋆ 4,426 -

phpBB PHP 7 2021 3.3.3 1.4k ⋆ 318,104 [42], [14], [40], [50]

osCommerce PHP 7 2017 2.3.4.1 272 ⋆ 44,355 [70], [14], [61], [71], [64]

Wordpress PHP 7 2021 5.7.1 15k ⋆ 253,183 [42], [14], [40], [50], [72]

TABLE 11: This table shows the difference between the code triggered by Witcher and Black Widow + BurpPlus (with SQL auditing enabled).
Although it did change the results by as much as 280 lines of code, none of the additions changed the outcome of the comparison.

Witcher v. Black Widow Witcher v. WebFuzz
Application W \BW+ W∩BW+ (BW+)\W Inc. % Inc. W \WF+ W∩BW+ (WF+)\W Inc. % Inc.

Doctor Appt. 206 258 43 0 0.00% 74 1,067 10 0 0.00%
Hosp. Mgmt. 88 1,386 24 0 0.00% 71 3,255 60 6 0.18%
Login 19 149 7 3 1.71% 3 516 0 0 0.00%
OpenEMR 25,117 77,499 2606 23 0.02% 22,473 109,511 19915 2063 1.36%
OSCommerce 2,497 8,947 863 65 0.53% 3,833 22,608 3622 0 0.00%
phpBB 2,967 38,529 1159 280 0.66% 15,133 35,730 7508 964 1.65%
rConfig 426 6,206 254 15 0.22% 104 2,456 62 32 1.22%
WackoPicko 66 676 285 2 0.19% 50 2,415 407 15 0.52%
Wordpress 6,966 71,927 6733 251 0.29% 37,401 87,610 10365 4430 3.27%
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